Repository logo
 

NOTCH1 mediates a switch between two distinct secretomes during senescence

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Ito, Y 
Kang, T-W 
Weekes, MP 
Matheson, NJ 

Abstract

Senescence, a persistent form of cell-cycle arrest, is often associated with a diverse secretome, which provides complex functionality for senescent cells within the tissue microenvironment. We show that oncogene-induced senescence is accompanied by a dynamic fluctuation of NOTCH1 activity, which drives a TGF-β-rich secretome, while suppressing the senescence-associated pro-inflammatory secretome through inhibition of C/EBPβ. NOTCH1 and NOTCH1-driven TGF-β contribute to 'lateral induction of senescence' through a juxtacrine NOTCH-JAG1 pathway. In addition, NOTCH1 inhibition during senescence facilitates upregulation of pro-inflammatory cytokines, promoting lymphocyte recruitment and senescence surveillance in vivo. As enforced activation of NOTCH1 signalling confers a near mutually exclusive secretory profile compared with typical senescence, our data collectively indicate that the dynamic alteration of NOTCH1 activity during senescence dictates a functional balance between these two distinct secretomes: one representing TGF-β and the other pro-inflammatory cytokines, highlighting that NOTCH1 is a temporospatial controller of secretome composition.

Description

Keywords

animals, cell aging, cell cycle checkpoints, cell line, tumor, humans, mice, transgenic, receptor, notch1, transforming growth factor beta

Journal Title

Nature Cell Biology

Conference Name

Journal ISSN

1465-7392
1476-4679

Volume Title

Publisher

Nature Publishing Group
Sponsorship
Cancer Research UK (19924)
Cancer Research UK (CB4210)
Cancer Research UK (C14303/A17197)
Wellcome Trust (101835/Z/13/Z)
Wellcome Trust (093964/Z/10/Z)
Wellcome Trust (108070/Z/15/Z)
Cancer Research UK (19159)
Cancer Research UK (19924)
This work was supported by the University of Cambridge, Cancer Research UK and Hutchison Whampoa. The M.N. laboratory is supported by Cancer Research UK Cambridge Institute Core Grant (C14303/A17197). M.H. was supported by CRUK Translational Medicine Research Fellowship and CRUK Clinician Scientist Fellowship (C52489/A19924). This work was also supported by a Wellcome Trust PRF (WT101835) to P.J.L., a Wellcome Trust Senior Fellowship to M.P.W. (108070/Z/15/Z), a Wellcome Trust Training Fellowship to N.J.M. (093964/Z/10/Z), and a Wellcome Trust Intermediate Fellowship (097162/Z/11/Z) to S.S. L.Z. was funded by the German Research Foundation (DFG; grants FOR2314 and SFB685), the Gottfried Wilhelm Leibniz Program, the European Research Council (projects ‘CholangioConcept’), the German Ministry for Education and Research (BMBF) (eMed-Multiscale HCC), the German Universities Excellence Initiative (third funding line: ‘future concept’), the German Center for Translational Cancer Research (DKTK) and the German–Israeli Cooperation in Cancer Research (DKFZ–MOST).