The grasshopper problem.
View / Open Files
Publication Date
2017-11-22Journal Title
Proceedings. Mathematical, physical, and engineering sciences
ISSN
1364-5021
Publisher
Royal Society of London
Volume
473
Issue
2207
Pages
20170494
Language
eng
Type
Article
This Version
AM
Physical Medium
Print-Electronic
Metadata
Show full item recordCitation
Goulko, O., & Kent, A. (2017). The grasshopper problem.. Proceedings. Mathematical, physical, and engineering sciences, 473 (2207), 20170494. https://doi.org/10.1098/rspa.2017.0494
Abstract
We introduce and physically motivate the following problem in geometric combinatorics, originally inspired by analysing Bell inequalities. A grasshopper lands at a random point on a planar lawn of area 1. It then jumps once, a fixed distance d, in a random direction. What shape should the lawn be to maximize the chance that the grasshopper remains on the lawn after jumping? We show that, perhaps surprisingly, a disc-shaped lawn is not optimal for any d>0. We investigate further by introducing a spin model whose ground state corresponds to the solution of a discrete version of the grasshopper problem. Simulated annealing and parallel tempering searches are consistent with the hypothesis that, for d<π−1/2, the optimal lawn resembles a cogwheel with n cogs, where the integer n is close to π(arcsin(π−−√d/2))−1
. We find transitions to other shapes for d≳π−1/2
.
Identifiers
External DOI: https://doi.org/10.1098/rspa.2017.0494
This record's URL: https://www.repository.cam.ac.uk/handle/1810/271842
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved