Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure
dc.contributor.author | Karani, Arfa | en |
dc.contributor.author | Yang, L | en |
dc.contributor.author | Bai, S | en |
dc.contributor.author | Futscher, MH | en |
dc.contributor.author | Snaith, HJ | en |
dc.contributor.author | Ehrler, B | en |
dc.contributor.author | Greenham, Neil | en |
dc.contributor.author | Di, Dawei | en |
dc.date.accessioned | 2018-03-14T06:13:50Z | |
dc.date.available | 2018-03-14T06:13:50Z | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/273978 | |
dc.description | © 2018 American Chemical Society. Metal-halide perovskite-based tandem solar cells show great promise for overcoming the Shockley-Queisser single-junction efficiency limit via low-cost tandem structures, but so far, they employ conventional bottom-cell materials that require stringent processing conditions. Meanwhile, difficulty in achieving low-bandgap (<1.1 eV) perovskites limits all-perovskite tandem cell development. Here we propose a tandem cell design based on a halide perovskite top cell and a chalcogenide colloidal quantum dot (CQD) bottom cell, where both materials provide bandgap tunability and solution processability. A theoretical efficiency of 43% is calculated for tandem-cell bandgap combinations of 1.55 (perovskite) and 1.0 eV (CQDs) under 1-sun illumination. We highlight that intersubcell radiative coupling contributes significantly (>11% absolute gain) to the ultimate efficiency via photon recycling. We report an initial experimental demonstration of a solution-processed monolithic perovskite/CQD tandem solar cell, showing evidence for subcell voltage addition. We model that a power conversion efficiency of 29.7% is possible by combining state-of-the-art perovskite and CQD solar cells. | en |
dc.rights | Attribution 4.0 International | en |
dc.rights | Attribution 4.0 International | en |
dc.rights | Attribution 4.0 International | en |
dc.rights | Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure | en |
dc.type | Dataset | |
dc.identifier.doi | 10.17863/CAM.21051 | |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | en |
rioxxterms.licenseref.startdate | 2018-04-13 | en |
dc.contributor.orcid | Karani, Arfa [0000-0002-9038-1593] | |
dc.contributor.orcid | Futscher, MH [0000-0001-8451-5009] | |
dc.contributor.orcid | Snaith, HJ [0000-0001-8511-790X] | |
dc.contributor.orcid | Greenham, Neil [0000-0002-2155-2432] | |
dc.contributor.orcid | Di, Dawei [0000-0003-0703-2809] | |
rioxxterms.type | Other | en |
pubs.funder-project-id | EPSRC (EP/M005143/1) | |
pubs.funder-project-id | EPSRC (via Loughborough University) (EP/P02484X/1) |