Repository logo
 

Extraction of gravitational-wave energy in higher dimensional numerical relativity using the Weyl tensor

Published version
Peer-reviewed

Type

Article

Change log

Authors

Cook, WG 

Abstract

© 2017 IOP Publishing Ltd. Gravitational waves are one of the most important diagnostic tools in the analysis of strong-gravity dynamics and have been turned into an observational channel with LIGO's detection of GW150914. Aside from their importance in astrophysics, black holes and compact matter distributions have also assumed a central role in many other branches of physics. These applications often involve spacetimes with D > 4 dimensions where the calculation of gravitational waves is more involved than in the four dimensional case, but has now become possible thanks to substantial progress in the theoretical study of general relativity in D > 4. Here, we develop a numerical implementation of the formalism by Godazgar and Reall [1] - based on projections of the Weyl tensor analogous to the Newman-Penrose scalars - that allows for the calculation of gravitational waves in higher dimensional spacetimes with rotational symmetry. We apply and test this method in black-hole head-on collisions from rest in D = 6 spacetime dimensions and find that a fraction of the Arnowitt-Deser-Misner mass is radiated away from the system, in excellent agreement with literature results based on the Kodama-Ishibashi perturbation technique. The method presented here complements the perturbative approach by automatically including contributions from all multipoles rather than computing the energy content of individual multipoles.

Description

Keywords

gravitational waves, black holes, higher dimensions

Journal Title

Classical and Quantum Gravity

Conference Name

Journal ISSN

0264-9381
1361-6382

Volume Title

34

Publisher

IOP Publishing
Sponsorship
Science and Technology Facilities Council (ST/J005673/1)
Science and Technology Facilities Council (ST/K00333X/1)
Science and Technology Facilities Council (ST/M00418X/1)
Science and Technology Facilities Council (ST/M007065/1)
Science and Technology Facilities Council (ST/L000636/1)
European Research Council (646597)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (690904)
Science and Technology Facilities Council (ST/H008586/1)
Science and Technology Facilities Council (ST/P000673/1)
This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkŁodowska-Curie grant agreement No 690904, from H2020-ERC-2014-CoG Grant No. 'MaGRaTh' 646597, from STFC Consolidator Grant No. ST/L000636/1, the SDSC Comet, PSC-Bridges and TACC Stampede clusters through NSF-XSEDE Award Nos. PHY-090003, the Cambridge High Performance Computing Service Supercomputer Darwin using Strategic Research Infrastructure Funding from the HEFCE and the STFC, and DiRAC's Cosmos Shared Memory system through BIS Grant No. ST/J005673/1 and STFC Grant Nos. ST/H008586/1, ST/K00333X/1. WGC is supported by a STFC studentship.