Repository logo
 

Adjudicating between face-coding models with individual-face fMRI responses.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Carlin, Johan D 
Kriegeskorte, Nikolaus 

Abstract

The perceptual representation of individual faces is often explained with reference to a norm-based face space. In such spaces, individuals are encoded as vectors where identity is primarily conveyed by direction and distinctiveness by eccentricity. Here we measured human fMRI responses and psychophysical similarity judgments of individual face exemplars, which were generated as realistic 3D animations using a computer-graphics model. We developed and evaluated multiple neurobiologically plausible computational models, each of which predicts a representational distance matrix and a regional-mean activation profile for 24 face stimuli. In the fusiform face area, a face-space coding model with sigmoidal ramp tuning provided a better account of the data than one based on exemplar tuning. However, an image-processing model with weighted banks of Gabor filters performed similarly. Accounting for the data required the inclusion of a measurement-level population averaging mechanism that approximates how fMRI voxels locally average distinct neuronal tunings. Our study demonstrates the importance of comparing multiple models and of modeling the measurement process in computational neuroimaging.

Description

Keywords

Algorithms, Brain, Brain Mapping, Face, Facial Recognition, Humans, Magnetic Resonance Imaging, Models, Neurological, Principal Component Analysis

Journal Title

PLoS Computational Biology

Conference Name

Journal ISSN

1553-734X
1553-7358

Volume Title

13

Publisher

Public Library of Science (PLoS)
Sponsorship
This work was supported by the European Research Council (261352 awarded to NK), the UK Medical Research Council (MC_A060_5PR2 awarded to NK), and a British Academy Postdoctoral Fellowship (JDC).