Repository logo
 

Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells.

Accepted version
Peer-reviewed

Change log

Abstract

LCK is a tyrosine kinase that is essential for initiating T-cell antigen receptor (TCR) signaling. A complete understanding of LCK function is constrained by a paucity of methods to quantitatively study its function within live cells. To address this limitation, we generated LCK*, in which a key active-site lysine is replaced by a photocaged equivalent, using genetic code expansion. This strategy enabled fine temporal and spatial control over kinase activity, thus allowing us to quantify phosphorylation kinetics in situ using biochemical and imaging approaches. We find that autophosphorylation of the LCK active-site loop is indispensable for its catalytic activity and that LCK can stimulate its own activation by adopting a more open conformation, which can be modulated by point mutations. We then show that CD4 and CD8, T-cell coreceptors, can enhance LCK activity, thereby helping to explain their effect in physiological TCR signaling. Our approach also provides general insights into SRC-family kinase dynamics.

Description

Journal Title

Nat Struct Mol Biol

Conference Name

Journal ISSN

1545-9993
1545-9985

Volume Title

24

Publisher

Springer Nature

Rights and licensing

Except where otherwised noted, this item's license is described as http://www.rioxx.net/licenses/all-rights-reserved
Sponsorship
Wellcome Trust (099966/Z/12/Z)