An affine model of the dynamics of astrophysical discs
View / Open Files
Authors
Ogilvie, GI
Publication Date
2018Journal Title
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
Publisher
Oxford University Press (OUP)
Volume
477
Issue
2
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Ogilvie, G. (2018). An affine model of the dynamics of astrophysical discs. Monthly Notices of the Royal Astronomical Society, 477 (2) https://doi.org/10.1093/mnras/sty588
Abstract
© 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. Thin astrophysical discs are very often modelled using the equations of 2D hydrodynamics. We derive an extension of this model that describes more accurately the behaviour of a thin disc in the absence of self-gravity, magnetic fields, and complex internal motions. The ideal fluid theory is derived directly from Hamilton's Principle for a 3D fluid after making a specific approximation to the deformation gradient tensor. We express the equations in Eulerian form after projection on to a reference plane. The disc is thought of as a set of fluid columns, each of which is capable of a time-dependent affine transformation, consisting of a translation together with a linear transformation in three dimensions. Therefore, in addition to the usual 2D hydrodynamics in the reference plane, the theory allows for a deformation of the mid-plane (as occurs in warped discs) and for the internal shearing motions that accompany such deformations. It also allows for the vertical expansions driven in non-circular discs by a variation of the vertical gravitational field around the horizontal streamlines, or by a divergence of the horizontal velocity. The equations of the affine model embody conservation laws for energy and potential vorticity, even for non-planar discs.We verify that they reproduce exactly the linear theories of 3D warped and eccentric discs in a secular approximation. However, the affine model does not rely on any secular or small-amplitude assumptions and should be useful in more general circumstances.
Keywords
accretion, accretion discs, hydrodynamics
Sponsorship
Science and Technology Facilities Council (ST/P000673/1)
Science and Technology Facilities Council (ST/L000636/1)
Identifiers
External DOI: https://doi.org/10.1093/mnras/sty588
This record's URL: https://www.repository.cam.ac.uk/handle/1810/278986
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk