Vegetation-wave interactions in salt marshes under storm surge conditions
View / Open Files
Authors
Rupprecht, F
Möller, I
Paul, M
Kudella, M
Spencer, T
van Wesenbeeck, BK
Wolters, G
Jensen, K
Bouma, TJ
Miranda-Lange, M
Schimmels, S
Publication Date
2017-03-01Journal Title
Ecological Engineering
ISSN
0925-8574
Publisher
Elsevier
Volume
100
Pages
301-315
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Rupprecht, F., Möller, I., Paul, M., Kudella, M., Spencer, T., van Wesenbeeck, B., Wolters, G., et al. (2017). Vegetation-wave interactions in salt marshes under storm surge conditions. Ecological Engineering, 100 301-315. https://doi.org/10.1016/j.ecoleng.2016.12.030
Abstract
Vegetation-wave interactions are critical in determining the capacity of coastal salt marshes to reduce wave energy (wave dissipation), enhance sedimentation and protect the shoreline from erosion. While vegetation-induced wave dissipation is increasingly recognized in low wave energy environments, little is known about: (i) the effect of vegetation on wave dissipation during storms when wave heights and water levels are highest; and (ii) the ability of different plant species to dissipate waves and to maintain their integrity under storm surge conditions. Experiments undertaken in one of the world’s largest wave flumes allowed, for the first time, the study of vegetation-wave interactions at near-field scale, under wave heights ranging from 0.1–0.9 m (corresponding to orbital velocities of 2–91 cm s−1) and water depths up to 2 m, in canopies of two typical NW European salt marsh grasses: Puccinellia maritima (Puccinellia) and Elymus athericus (Elymus). Results indicate that plant flexibility and height, as well as wave conditions and water depth, play an important role in determining how salt marsh vegetation interacts with waves. Under medium conditions (orbital velocity 42–63 cm s−1), the effect of Puccinellia and Elymus on wave orbital velocities varied with water depth and wave period. Under high water levels (2 m) and long wave periods (4.1 s), within the flexible, low-growing Puccinellia canopy orbital velocity was reduced by 35% while in the more rigid, tall Elymus canopy deflection and folding of stems occurred and no significant effect on orbital velocity was found. Under low water levels (1 m) and short wave periods (2.9 s) by contrast, Elymus reduced near-bed velocity more than Puccinellia. Under high orbital velocities (≥74 cm s−1), flattening of the canopy and an increase of orbital velocity was observed for both Puccinellia and Elymus. Stem folding and breakage in Elymus at a threshold orbital velocity ≥ 42 cm s−1 coincided with a levelling-off in the marsh wave dissipation capacity, while Puccinellia survived even extreme wave forces without physical damage. These findings suggest a species-specific control of wave dissipation by salt marshes which can potentially inform predictions of the wave dissipation capacity of marshes and their resilience to storm surge conditions.
Keywords
Wave dissipation, Flow reduction, Coastal wetlands, Biophysical plant properties, Plant breakage, Vegetation resilience, Wave flume experiment, Cauchy number
Sponsorship
M.P. acknowledges funding by the German Science Foundation (grant no. PA 2547/1-1). The work described in this publication was supported by the European Community’s 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV, Contract no. 261529 and by a grant from The Isaac Newton Trust, Trinity College, Cambridge.
Funder references
European Commission (261520)
Identifiers
External DOI: https://doi.org/10.1016/j.ecoleng.2016.12.030
This record's URL: https://www.repository.cam.ac.uk/handle/1810/280367
Rights
Licence:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk