Seismically determined elastic parameters for Earth’s outer core
View / Open Files
Authors
Irving, Jessica
Cottaar, S
Lekic, Vedran
Publication Date
2018-06Journal Title
Science Advances
ISSN
2375-2548
Publisher
American Association for the Advancement of Science
Volume
4
Issue
6
Number
eaar2538
Type
Article
Metadata
Show full item recordCitation
Irving, J., Cottaar, S., & Lekic, V. (2018). Seismically determined elastic parameters for Earth’s outer core. Science Advances, 4 (6. eaar2538) https://doi.org/10.1126/sciadv.aar2538
Abstract
Turbulent convection of the liquid iron alloy outer core generates Earth's magnetic field and supplies heat to the mantle. The exact composition of the iron alloy is fundamentally linked to the processes powering the convection, and can to be constrained by its seismic properties. Discrepancies between seismic models determined using body waves and normal modes show that these properties are not yet fully agreed upon. Additionally, technical challenges in experimentally measuring the equation-of-state (EoS) parameters of liquid iron alloys at high pressures and temperatures further complicate compositional inferences. We directly infer EoS parameters describing the Earth's outer core from normal mode center frequency observations, and present the resulting Elastic Parameters of the Outer Core (EPOC) seismic model. Unlike alternative seismic models, ours requires only three parameters and guarantees physically realistic behavior with increasing pressure for a well-mixed homogeneous material along an isentrope, consistent with the outer core's condition. We show that EPOC predicts available normal mode frequencies better than the Preliminary Reference Earth Model (PREM) while also being more consistent with body-wave derived models, eliminating a longstanding discrepancy. The velocity at the top of the outer core is lower, and increases with depth more steeply, in EPOC than in PREM, while the density in EPOC is higher than in PREM across the outer core. The steeper profiles and higher density imply the outer core comprises a lighter but more compressible alloy than that inferred for PREM. Furthermore, EPOC's steeper velocity gradient explains differential SmKS body wave travel times better than previous 1D global models, without requiring an anomalously slow $\sim$90-450 km thick layer at the top of the outer core.
Keywords
0404 Geophysics
Sponsorship
J.C.E.I. acknowledges support from the NSF (EAR1644399), and V.L. acknowledges support from the NSF (EAR1345082) and the Packard Foundation. This work started at the 2016 Cooperative Institute for Dynamic Earth Research (CIDER) workshop at the Kavli Institute for Theoretical Physics, University of California, Santa Barbara (supported by the NSF FESD-1135452).
Identifiers
External DOI: https://doi.org/10.1126/sciadv.aar2538
This record's URL: https://www.repository.cam.ac.uk/handle/1810/280485
Rights
Attribution-NonCommercial 4.0 International
Licence URL: https://creativecommons.org/licenses/by-nc/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk