Microfluidics-based super-resolution microscopy enables nanoscopic characterization of blood stem cell rolling.
View / Open Files
Authors
Publication Date
2018-07Journal Title
Sci Adv
ISSN
2375-2548
Publisher
American Association for the Advancement of Science (AAAS)
Volume
4
Issue
7
Pages
eaat5304
Language
eng
Type
Article
Physical Medium
Electronic-eCollection
Metadata
Show full item recordCitation
AbuZineh, K., Joudeh, L. I., Al Alwan, B., Hamdan, S. M., Merzaban, J. S., & Habuchi, S. (2018). Microfluidics-based super-resolution microscopy enables nanoscopic characterization of blood stem cell rolling.. Sci Adv, 4 (7), eaat5304. https://doi.org/10.1126/sciadv.aat5304
Abstract
Hematopoietic stem/progenitor cell (HSPC) homing occurs via cell adhesion mediated by spatiotemporally organized ligand-receptor interactions. Although molecules and biological processes involved in this multistep cellular interaction with endothelium have been studied extensively, molecular mechanisms of this process, in particular the nanoscale spatiotemporal behavior of ligand-receptor interactions and their role in the cellular interaction, remain elusive. We introduce a microfluidics-based super-resolution fluorescence imaging platform and apply the method to investigate the initial essential step in the homing, tethering, and rolling of HSPCs under external shear stress that is mediated by selectins, expressed on endothelium, with selectin ligands (that is, CD44) expressed on HSPCs. Our new method reveals transient nanoscale reorganization of CD44 clusters during cell rolling on E-selectin. We demonstrate that this mechanical force-induced reorganization is accompanied by a large structural reorganization of actin cytoskeleton. The CD44 clusters were partly disrupted by disrupting lipid rafts. The spatial reorganization of CD44 and actin cytoskeleton was not observed for the lipid raft-disrupted cells, demonstrating the essential role of the spatial clustering of CD44 on its reorganization during cell rolling. The lipid raft disruption causes faster and unstable cell rolling on E-selectin compared with the intact cells. Together, our results demonstrate that the spatial reorganization of CD44 and actin cytoskeleton is the result of concerted effect of E-selectin-ligand interactions, external shear stress, and spatial clustering of the selectin ligands, and has significant effect on the tethering/rolling step in HSPC homing. Our new experimental platform provides a foundation for characterizing complicated HSPC homing.
Keywords
E-Selectin, Hematopoietic Stem Cells, Humans, Hyaluronan Receptors, Membrane Microdomains, Microfluidics, Microscopy, Microscopy, Confocal, Nanostructures
Identifiers
External DOI: https://doi.org/10.1126/sciadv.aat5304
This record's URL: https://www.repository.cam.ac.uk/handle/1810/280556
Rights
Attribution-NonCommercial 4.0 International
Licence URL: https://creativecommons.org/licenses/by-nc/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk