Past carbonate preservation events in the deep Southeast Atlantic Ocean (Cape Basin) and their implications for Atlantic overturning dynamics and marine carbon cycling
Authors
Gottschalk, Julia
Skinner, LC
Crowhurst, Simon
Jaccard, Samuel
Charles, Christopher
Publication Date
2018Journal Title
Paleoceanography and Paleoclimatology
ISSN
0883-8305
Publisher
Wiley-Blackwell
Type
Article
Metadata
Show full item recordCitation
Gottschalk, J., Hodell, D., Skinner, L., Crowhurst, S., Jaccard, S., & Charles, C. (2018). Past carbonate preservation events in the deep Southeast Atlantic Ocean (Cape Basin) and their implications for Atlantic overturning dynamics and marine carbon cycling. Paleoceanography and Paleoclimatology https://doi.org/10.1029/2018PA003353
Abstract
Micropaleontological and geochemical analyses reveal distinct millennial-scale increases in carbonate preservation in the deep Southeast Atlantic (Cape Basin) during strong and prolonged Greenland interstadials that are superimposed on long-term (orbital-scale) changes in carbonate burial. These data suggest carbonate oversaturation of the deep Atlantic and a strengthened Atlantic Meridional Overturning Circulation (AMOC) during the most intense Greenland interstadials. However, proxy evidence from outside the Cape Basin indicate that AMOC changes also occurred during weaker and shorter Greenland interstadials. Here we revisit the link between AMOC dynamics and carbonate saturation in the deep Cape Basin over the last 400 kyr (sediment cores TN057-21, TN057-10 and ODP Site 1089) by reconstructing centennial changes in carbonate preservation using mm-scale X-ray fluorescence (XRF) scanning data. We observe close agreement between variations in XRF Ca/Ti, sedimentary carbonate content and foraminiferal shell fragmentation, reflecting a common control primarily through changing deep-water carbonate saturation. We suggest that the high-frequency (sub-orbital) component of the XRF Ca/Ti records indicates the fast and recurrent redistribution of carbonate ions in the Atlantic basin via the AMOC during both long/strong- and short/weak North Atlantic climate anomalies. In contrast, the low- frequency (orbital) XRF Ca/Ti component is interpreted to reflect slow adjustments through carbonate compensation, and/or changes in the deep-ocean respired carbon content. Our findings emphasize the recurrent influence of rapid AMOC variations on the marine carbonate system during past glacial periods, providing a mechanism for transferring the impacts of North Atlantic climate anomalies to the global carbon cycle via the Southern Ocean.
Keywords
Southern Ocean, carbonate preservation, carbonate compensation, glacial cycles, AMOC, XRF
Sponsorship
J.G. acknowledges support from the Swiss National Science Foundation (grant 200021_163003), the German Research Foundation (grant GO 2294/2-1) and the Gates Cambridge Trust. L.C.S. acknowledges the Royal Society, the Cambridge Isaac Newton Trust and NERC grant NE/J010545/1. S.L.J was funded by the Swiss National Science Foundation (grants PP00P2-144811 and PP002_172915).
Funder references
Natural Environment Research Council (NE/J010545/1)
Isaac Newton Trust (1119(j))
The Royal Society (uf061471)
European Research Council (339694)
Identifiers
External DOI: https://doi.org/10.1029/2018PA003353
This record's URL: https://www.repository.cam.ac.uk/handle/1810/283514
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk