Estimating Sheep Pain Level Using Facial Action Unit Detection
View / Open Files
Authors
Lu, Y
Mahmoud, M
Robinson, P
Publication Date
2017Journal Title
Proceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - 1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Biometrics in the Wild, Bwild 2017, Heterogeneous Face Recognition, HFR 2017, Joint Challenge on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, DCER and HPE 2017 and 3rd Facial Expression Recognition and Analysis Challenge, FERA 2017
Conference Name
2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)
ISSN
2326-5396
ISBN
9781509040230
Publisher
IEEE
Pages
394-399
Type
Conference Object
Metadata
Show full item recordCitation
Lu, Y., Mahmoud, M., & Robinson, P. (2017). Estimating Sheep Pain Level Using Facial Action Unit Detection. Proceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - 1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Biometrics in the Wild, Bwild 2017, Heterogeneous Face Recognition, HFR 2017, Joint Challenge on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, DCER and HPE 2017 and 3rd Facial Expression Recognition and Analysis Challenge, FERA 2017, 394-399. https://doi.org/10.1109/FG.2017.56
Abstract
Assessing pain levels in animals is a crucial, but time-consuming process in maintaining their welfare. Facial expressions in sheep are an efficient and reliable indicator of pain levels. In this paper, we have extended techniques for recognising human facial expressions to encompass facial action units in sheep, which can then facilitate automatic estimation of pain levels. Our multi-level approach starts with detection of sheep faces, localisation of facial landmarks, normalisation and then extraction of facial features. These are described using Histogram of Oriented Gradients, and then classified using Support Vector Machines. Our experiments show an overall accuracy of 67% on sheep Action Units classification. We argue that with more data, our approach on automated pain level assessment can be generalised to other animals.
Keywords
Pain Research, Chronic Pain
Identifiers
External DOI: https://doi.org/10.1109/FG.2017.56
This record's URL: https://www.repository.cam.ac.uk/handle/1810/284534
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk