Elucidating oncogenic mechanisms in human B cell malignancies
View / Open Files
Authors
Caeser, Rebecca
Advisors
Hodson, Daniel
Date
2018-11-24Awarding Institution
University of Cambridge
Author Affiliation
Haematology
Qualification
Doctor of Philosophy (PhD)
Language
English
Type
Thesis
Metadata
Show full item recordCitation
Caeser, R. (2018). Elucidating oncogenic mechanisms in human B cell malignancies (Doctoral thesis). https://doi.org/10.17863/CAM.32382
Abstract
This study consists of two pieces of work investigating haematological malignancies; Acute Lymphoblastic Leukaemia (ALL) and Diffuse Large B Cell Lymphoma (DLBCL). Firstly, Pre-B ALL represents the most common paediatric malignancy and despite increasingly improved outcomes for patients, ~ 20% of all patients diagnosed with ALL relapse. Activating mutations in the RAS pathway are common (~50%) and result in hyperactivation of the MAPK pathway. I identified Erk negative feedback control via DUSP6 to be crucial for NRASG12D-mediated pre-B cell transformation and investigated its potential as a therapeutic target. I showed that a small molecule inhibitor of DUSP6 (BCI) selectively induced cell death in patient-derived pre-B ALL cells; with a higher sensitivity observed in relapse pre-B ALL. I also discovered that a high level of Erk activity is required for proliferation of normal pre-B cells, but dispensable in leukemic pre-B ALL cells. In addition, I found that human B cell malignancies can be grouped into three categories that fundamentally differ in their ability to control Erk signalling strength.
Secondly, DLBCL is the most common haematological malignancy and although potentially curable with chemotherapy, 40% of patients still succumb from their disease. Recent exome sequencing studies have identified hundreds of genetic alterations but, for most, their contribution to disease, or their importance as therapeutic targets, remains uncertain. I optimised a novel approach to screen the functional importance of these mutations. This was achieved by reconstituting non-malignant, primary, human germinal centre B cells (GC B cells) with combinations of wildtype and mutant genes to recapitulate the genetic events of DLBCL. When injected into immunodeficient mice, these oncogene-transduced GC B cells gave rise to tumours that closely resemble human DLBCL, reinforcing the biological relevance of this system. To screen potential tumour suppressor mutations in this system in a high throughput fashion, I developed a lymphoma-focused CRISPR library of 692 genes recurrently altered in B cell lymphomas. These experiments identified GNA13 as an unexpectedly potent tumour suppressor in human GC B cells and provided new understanding to its mechanism of action.
These findings provide novel understanding of the complexity of oncogenic mechanisms in human B cell malignancies.
Keywords
Acute Lymphoblastic Leukaemia (ALL), Diffuse Large B Cell Lymphoma, Oncogenic signalling, Erk signalling, CRISPR, primary human germinal centre B cells
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.32382
Rights
All rights reserved, All Rights Reserved
Licence URL: https://www.rioxx.net/licenses/all-rights-reserved/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk