Porous SnO2-Cu x O nanocomposite thin film on carbon nanotubes as electrodes for high performance supercapacitors.
Publication Date
2019-01-04Journal Title
Nanotechnology
ISSN
0957-4484
Publisher
IOP Publishing
Volume
30
Issue
1
Pages
015401
Language
eng
Type
Article
Physical Medium
Print-Electronic
Metadata
Show full item recordCitation
Daneshvar, F., Aziz, A., Abdelkader, A. M., Zhang, T., Sue, H., & Welland, M. E. (2019). Porous SnO2-Cu x O nanocomposite thin film on carbon nanotubes as electrodes for high performance supercapacitors.. Nanotechnology, 30 (1), 015401. https://doi.org/10.1088/1361-6528/aae5c6
Abstract
Metal oxides are promising materials for supercapacitors due to their high theoretical capacitance. However, their poor electrical conductivity is a major challenge. Hybridization with conductive nanostructured carbon-based materials such as carbon nanotubes (CNTs) has been proposed to improve the conductivity and increase the surface area. In this work, CNTs are used as a template for synthesizing porous thin films of SnO2-CuO-Cu2O (SnO2-Cu x O) via an electroless deposition technique. Tin, with its high wettability and electrical conductivity, acts as an intermediate layer between copper and the CNTs and provides a strong interaction between them. We also observed that by controlling the interfacial characteristics of CNTs and varying the composition of the electroless bath, the SnO2-Cu x O thin film morphology can be easily manipulated. Electrochemical characterizations show that CNT/SnO2-Cu x O nanocomposite possesses pseudocapacitive behavior that reaches a specific capacitance of 662 F g-1 and the retention is 94% after 5000 cycles, which outperforms any known copper and tin-based supercapacitors in the literature. This excellent performance is mainly attributed to high specific surface area, small particle size, the synergistic effect of Sn, and conductivity improvement by using CNTs. The combination of CNTs and metal oxides holds promise for supercapacitors with improved performance.
Keywords
pseudocapacitance, carbon nanotube, copper oxide, electroless deposition, supercapacitor
Sponsorship
Lloyds Register Foundation
London
Funder references
Lloyd's Register Foundation (unknown)
Identifiers
External DOI: https://doi.org/10.1088/1361-6528/aae5c6
This record's URL: https://www.repository.cam.ac.uk/handle/1810/285633
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk