Repository logo
 

Ultrafast collinear scattering and carrier multiplication in graphene.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Brida, D 
Tomadin, A 
Manzoni, C 
Kim, YJ 

Abstract

Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.

Description

Keywords

cond-mat.mes-hall, cond-mat.mes-hall

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

4

Publisher

Springer Science and Business Media LLC
Sponsorship
Engineering and Physical Sciences Research Council (EP/G030480/1)
Engineering and Physical Sciences Research Council (EP/G042357/1)
Engineering and Physical Sciences Research Council (EP/K01711X/1)
Engineering and Physical Sciences Research Council (EP/K017144/1)