Saccharomyces cerevisiae adapted to grow in the presence of low-dose rapamycin exhibit altered amino acid metabolism.
View / Open Files
Publication Date
2018-11-20Journal Title
Cell Commun Signal
ISSN
1478-811X
Publisher
Springer Science and Business Media LLC
Volume
16
Issue
1
Pages
85
Language
eng
Type
Article
This Version
VoR
Physical Medium
Electronic
Metadata
Show full item recordCitation
Dikicioglu, D., Dereli Eke, E., Eraslan, S., Oliver, S. G., & Kirdar, B. (2018). Saccharomyces cerevisiae adapted to grow in the presence of low-dose rapamycin exhibit altered amino acid metabolism.. Cell Commun Signal, 16 (1), 85. https://doi.org/10.1186/s12964-018-0298-y
Abstract
BACKGROUND: Rapamycin is a potent inhibitor of the highly conserved TOR kinase, the nutrient-sensitive controller of growth and aging. It has been utilised as a chemotherapeutic agent due to its anti-proliferative properties and as an immunosuppressive drug, and is also known to extend lifespan in a range of eukaryotes from yeast to mammals. However, the mechanisms through which eukaryotic cells adapt to sustained exposure to rapamycin have not yet been thoroughly investigated. METHODS: Here, S. cerevisiae response to long-term rapamycin exposure was investigated by identifying the physiological, transcriptomic and metabolic differences observed for yeast populations inoculated into low-dose rapamycin-containing environment. The effect of oxygen availability and acidity of extracellular environment on this response was further deliberated by controlling or monitoring the dissolved oxygen level and pH of the culture. RESULTS: Yeast populations grown in the presence of rapamycin reached higher cell densities complemented by an increase in their chronological lifespan, and these physiological adaptations were associated with a rewiring of the amino acid metabolism, particularly that of arginine. The ability to synthesise amino acids emerges as the key factor leading to the major mechanistic differences between mammalian and microbial TOR signalling pathways in relation to nutrient recognition. CONCLUSION: Oxygen levels and extracellular acidity of the culture were observed to conjointly affect yeast populations, virtually acting as coupled physiological effectors; cells were best adapted when maximal oxygenation of the culture was maintained in slightly acidic pH, any deviation necessitated more extensive readjustment to additional stress factors.
Keywords
Arginine metabolism, Extracellular pH, Glutamine metabolism, Oxygen availability, Rapamycin, Target of rapamycin (TOR), Adaptation, Physiological, Amino Acids, Dose-Response Relationship, Drug, Oxygen, Saccharomyces cerevisiae, Sirolimus, Time Factors, Transcription, Genetic
Identifiers
External DOI: https://doi.org/10.1186/s12964-018-0298-y
This record's URL: https://www.repository.cam.ac.uk/handle/1810/287187
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk