Show simple item record

dc.contributor.authorLinklater, Denver P
dc.contributor.authorDe Volder, Michael
dc.contributor.authorBaulin, Vladimir A
dc.contributor.authorWerner, Marco
dc.contributor.authorJessl, Sarah
dc.contributor.authorGolozar, Mehdi
dc.contributor.authorMaggini, Laura
dc.contributor.authorRubanov, Sergey
dc.contributor.authorHanssen, Eric
dc.contributor.authorJuodkazis, Saulius
dc.contributor.authorIvanova, Elena P
dc.date.accessioned2019-01-09T14:06:23Z
dc.date.available2019-01-09T14:06:23Z
dc.date.issued2018-07-24
dc.identifier.issn1936-0851
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/287728
dc.description.abstractThe threat of a global rise in the number of untreatable infections caused by antibiotic-resistant bacteria calls for the design and fabrication of a new generation of bactericidal materials. Here, we report a concept for the design of antibacterial surfaces, whereby cell death results from the ability of the nanofeatures to deflect when in contact with attaching cells. We show, using three-dimensional transmission electron microscopy, that the exceptionally high aspect ratio (100-3000) of vertically aligned carbon nanotubes (VACNTs) imparts extreme flexibility, which enhances the elastic energy storage in CNTs as they bend in contact with bacteria. Our experimental and theoretical analyses demonstrate that, for high aspect ratio structures, the bending energy stored in the CNTs is a substantial factor for the physical rupturing of both Gram-positive and Gram-negative bacteria. The highest bactericidal rates (99.3% for Pseudomonas aeruginosa and 84.9% for Staphylococcus aureus) were obtained by modifying the length of the VACNTs, allowing us to identify the optimal substratum properties to kill different types of bacteria efficiently. This work highlights that the bactericidal activity of high aspect ratio nanofeatures can outperform both natural bactericidal surfaces and other synthetic nanostructured multifunctional surfaces reported in previous studies. The present systems exhibit the highest bactericidal activity of a CNT-based substratum against a Gram-negative bacterium reported to date, suggesting the possibility of achieving close to 100% bacterial inactivation on VACNT-based substrata.
dc.description.sponsorshipMDV and SJ acknowledge support from the ERC Starting Grant HIENA 337739. V.A.B. M.W. and E.P.I. acknowledge funding from Marie Curie Actions under EU FP7 Initial Training Network SNAL 608184.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.subjectcarbon nanotubes
dc.subjectinterface interactions
dc.subjectmechanobactericidal mechanism
dc.subjectnanoscale mechanics
dc.subjectstorage of elastic energy
dc.subjectvertically aligned carbon nanotubes
dc.titleHigh Aspect Ratio Nanostructures Kill Bacteria via Storage and Release of Mechanical Energy.
dc.typeArticle
prism.endingPage6667
prism.issueIdentifier7
prism.publicationDate2018
prism.publicationNameACS Nano
prism.startingPage6657
prism.volume12
dc.identifier.doi10.17863/CAM.35043
dcterms.dateAccepted2018-05-31
rioxxterms.versionofrecord10.1021/acsnano.8b01665
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-07-24
dc.contributor.orcidDe Volder, Michael [0000-0003-1955-2270]
dc.contributor.orcidMaggini, Laura [0000-0001-9434-9470]
dc.identifier.eissn1936-086X
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEPSRC (1470335)
pubs.funder-project-idEuropean Research Council (337739)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (702435)
pubs.funder-project-idEuropean Commission (608184)
cam.issuedOnline2018-05-31
rioxxterms.freetoread.startdate2019-05-31


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record