Physics-informed data-driven prediction of premixed flame dynamics with data assimilation
View / Open Files
Journal Title
Proceedings of the 2018 Summer Program
Conference Name
Stanford University Centre of Turbulence Research Summer Program
Type
Conference Object
This Version
AM
Metadata
Show full item recordCitation
Yu, H., Juniper, M., & Magri, L. Physics-informed data-driven prediction of premixed flame dynamics with data assimilation. Proceedings of the 2018 Summer Program https://doi.org/10.17863/CAM.35413
Abstract
We propose an on-the-fly statistical learning method to make a qualitative reduced-order model of the dynamics of a premixed flame quantitatively accurate. This physics- informed data-driven method is based on the statistically optimal combination of (i) a reduced-order model of the dynamics of a premixed flame with a level-set method, (ii) high-quality data, which can be provided by experiments and/or high-fidelity simulations, and (iii) assimilation of the data into the reduced-order model to improve the prediction of the dynamics of the premixed flame. The reduced-order model learns the state and the parameters of the premixed flame on the fly with the ensemble Kalman filter, which is a Bayesian filter used in the data assimilation of high-dimensional dynamical systems, e.g., in weather forecasting. The proposed method and algorithm are applied to two test cases with relevance to reacting flow and instability. First, the capabilities of the framework are demonstrated in a twin experiment, where the assimilated data are produced from the same model as that used in prediction. Second, the assimilated data are extracted from a high-fidelity reacting-flow direct numerical simulation (DNS). The results are analyzed by using Bayesian statistics, which provide the uncertainties of the calculations. This method opens up new possibilities for on-the-fly optimal calibration of computationally cheap reduced-order models when experimental data become available, for example, from sensors.
Sponsorship
Stanford University Centre of Turbulence Summer Program.
Funder references
Royal Academy of Engineering (RAEng)
Identifiers
External DOI: https://doi.org/10.17863/CAM.35413
This record's URL: https://www.repository.cam.ac.uk/handle/1810/288098
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk