Repository logo
 

Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration-probing the role of PPARĪ±.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Horscroft, James A 
O'Brien, Katie A 
Clark, Anna D 
Lindsay, Ross T 
Steel, Alice Strang 

Abstract

Dietary inorganic nitrate prevents aspects of cardiac mitochondrial dysfunction induced by hypoxia, although the mechanism is not completely understood. In both heart and skeletal muscle, nitrate increases fatty acid oxidation capacity, and in the latter case, this involves up-regulation of peroxisome proliferator-activated receptor (PPAR)Ī± expression. Here, we investigated whether dietary nitrate modifies mitochondrial function in the hypoxic heart in a PPARĪ±-dependent manner. Wild-type (WT) mice and mice without PPARĪ± (Ppara-/-) were given water containing 0.7 mM NaCl (control) or 0.7 mM NaNO3 for 35 d. After 7 d, mice were exposed to normoxia or hypoxia (10% O2) for the remainder of the study. Mitochondrial respiratory function and metabolism were assessed in saponin-permeabilized cardiac muscle fibers. Environmental hypoxia suppressed mass-specific mitochondrial respiration and additionally lowered the proportion of respiration supported by fatty acid oxidation by 18% (P < 0.001). This switch away from fatty acid oxidation was reversed by nitrate treatment in hypoxic WT but not Ppara-/- mice, indicating a PPARĪ±-dependent effect. Hypoxia increased hexokinase activity by 33% in all mice, whereas lactate dehydrogenase activity increased by 71% in hypoxic WT but not Ppara-/- mice. Our findings indicate that PPARĪ± plays a key role in mediating cardiac metabolic remodeling in response to both hypoxia and dietary nitrate supplementation.-Horscroft, J. A., O'Brien, K. A., Clark, A. D., Lindsay, R. T., Steel, A. S., Procter, N. E. K., Devaux, J., Frenneaux, M., Harridge, S. D. R., Murray, A. J. Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration-probing the role of PPARĪ±.

Description

Keywords

fatty acids, heart, metabolism, mitochondria, Animals, Cell Respiration, Hypoxia, Inorganic Chemicals, Mice, Mice, Knockout, Mitochondria, Heart, Myocardium, Nitrates, Oxidative Phosphorylation, PPAR alpha

Journal Title

FASEB J

Conference Name

Journal ISSN

0892-6638
1530-6860

Volume Title

33

Publisher

Wiley
Sponsorship
Isaac Newton Trust (1044(y))
Biotechnology and Biological Sciences Research Council (BB/F016581/1)