Repository logo
 

Quantized conductance of one-dimensional strongly correlated electrons in an oxide heterostructure

Published version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Hou, H 
Kozuka, Y 
Liao, JW 
Smith, LW 

Abstract

Oxide heterostructures are versatile platforms with which to research and create novel functional nanostructures. We successfully develop one-dimensional (1D) quantum-wire devices using quantum point contacts on MgZnO/ZnO heterostructures and observe ballistic electron transport with conductance quantised in units of 2e^2/h. Using DC-bias and in-plane field measurements, we find that the g-factor is enhanced to around 6.8, more than three times the value in bulk ZnO. We show that the effective mass m^* increases as the electron density decreases, resulting from the strong electron-electron interactions. In this strongly interacting 1D system we study features matching the '0.7' conductance anomalies up to the fifth subband.(up to ~5.7 x 2e^2/h). This paper demonstrates that high-mobility oxide heterostructures such as this can provide good alternatives to conventional III-V semiconductors in spintronics and quantum computing as they do not have their unavoidable dephasing from nuclear spins. This paves a way for the development of qubits benefiting from the low defects of an undoped heterostructure together with the long spin lifetimes achievable in silicon.

Description

Keywords

Ballistic transport, Oxide heterostructures

Journal Title

Physical Review B

Conference Name

Journal ISSN

2469-9950
2469-9969

Volume Title

99

Publisher

American Physical Society (APS)

Rights

Publisher's own licence
Sponsorship
EPSRC (1648373)
JST, PRESTO Grant Number JPMJPR1763 and JST, CREST Grant Number JP-MJCR16F1, Japan