Influence of composition on the unipolar electric fatigue of Ba(Zr<inf>0.2</inf>Ti<inf>0.8</inf>)O<inf>3</inf>-(Ba<inf>0.7</inf>Ca<inf>0.3</inf>)TiO<inf>3</inf> lead-free piezoceramics
View / Open Files
Authors
Liu, N
Dietz, C
Rödel, J
Publication Date
2017-10-01Journal Title
Journal of the American Ceramic Society
ISSN
0002-7820
Volume
100
Issue
10
Pages
4699-4709
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Rojas, V., Koruza, J., Patterson, E., Acosta, M., Jiang, X., Liu, N., Dietz, C., & et al. (2017). Influence of composition on the unipolar electric fatigue of Ba(Zr<inf>0.2</inf>Ti<inf>0.8</inf>)O<inf>3</inf>-(Ba<inf>0.7</inf>Ca<inf>0.3</inf>)TiO<inf>3</inf> lead-free piezoceramics. Journal of the American Ceramic Society, 100 (10), 4699-4709. https://doi.org/10.1111/jace.15013
Abstract
© 2017 The American Ceramic Society The lead-free (1−x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 system is considered as promising candidate for the replacement of lead-based piezoceramics in actuation applications, during which electric fatigue is a major concern. This issue was addressed in this work, where the unipolar fatigue resistance of three (1−x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 compositions with different crystallographic structures (rhombohedral, orthorhombic, and tetragonal) was evaluated. Strain asymmetry and development of an internal bias field were observed in all compositions. The decrease in the remanent polarization and the large signal piezoelectric coefficient after 107 unipolar cycles was found to lie between 6%-12% and 2%-13%, respectively. The most pronounced fatigue was observed for the orthorhombic composition, which has the largest extrinsic contribution to strain. On the other hand, the best fatigue resistance was observed for the tetragonal composition, which has a predominantly intrinsic strain response. The correlation of fatigue resistance with strain mechanism was corroborated with determination of the Rayleigh parameters and changes in the domain morphology after cycling as confirmed by piezoresponse force microscopy.
Identifiers
External DOI: https://doi.org/10.1111/jace.15013
This record's URL: https://www.repository.cam.ac.uk/handle/1810/294399
Rights
All rights reserved