Repository logo
 

Origin of Defect Tolerance in InAs/GaAs Quantum Dot Lasers Grown on Silicon

Accepted version
Peer-reviewed

Repository DOI


Type

Article

Change log

Authors

Liu, Z 
Martin, M 
Baron, T 

Abstract

© 1983-2012 IEEE. High-performance III-V quantum-dot lasers monolithically grown on Si substrates have been demonstrated as a promising solution to realize Si-based laser sources with very low threshold current density, high output power, and long lifetime, even with relatively high density of defects due to the material dissimilarities between III-Vs and Si. On the other hand, although conventional III-V quantum-well lasers grown on Si have been demonstrated after great efforts worldwide for more than 40 years, their practicality is still a great challenge because of their very high threshold current density and very short lifetime. However, the physical mechanisms behind the superior performance of silicon-based III-V quantum-dot lasers remain unclear. In this paper, we directly compare the performance of a quantum-well and a quantum-dot laser monolithically grown on on-axis Si (001) substrates, both experimentally and theoretically, under the impact of the same density of threading dislocations. A quantum-dot laser grown on a Si substrate with a high operating temperature (105 °C) has been demonstrated with a low threshold current density of 173 A/cm2 and a high single facet output power >100 mW at room temperature, while there is no lasing operation for the quantum-well device at room temperature even at high injection levels. By using a rate equation travelling-wave model, the quantum-dot laser's superior performance compared with its quantum well-based counterpart on Si is theoretically explained in terms of the unique properties of quantum dots, i.e., efficient carrier capture and high thermal energy barriers preventing the carriers from migrating into defect states.

Description

Keywords

Silicon, Substrates, Gallium arsenide, Temperature measurement, Quantum dot lasers, Laser theory, Quantum dot lasers, semiconductor growth, silicon photonics

Journal Title

Journal of Lightwave Technology

Conference Name

Journal ISSN

0733-8724
1558-2213

Volume Title

38

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Rights

All rights reserved
Sponsorship
EPSRC (1734996)
EPSRC (via University College London (UCL)) (EP/T028475/1)