Stress response and microstructural evolution of nickel-based superalloys during low cycle fatigue: Physics-based modelling of cyclic hardening and softening
View / Open Files
Journal Title
International Journal of Plasticity
ISSN
0749-6419
Publisher
Elsevier BV
Language
en
Type
Article
This Version
AM
Metadata
Show full item recordCitation
León-Cázares, F., Monni, F., Jackson, T., Galindo-Nava, E., & Rae, C. (2020). Stress response and microstructural evolution of nickel-based superalloys during low cycle fatigue: Physics-based modelling of cyclic hardening and softening. International Journal of Plasticity https://doi.org/10.1016/j.ijplas.2020.102682
Abstract
Low cycle fatigue is one of the main life limiting factors in gas turbine discs. The plastic deformation behaviour that leads to crack initiation is not fully understood, and phenomenological descriptions fail to explain the stress response typical of nickel-based superalloys, which consists of cyclic hardening followed by cyclic softening. In this study, samples of nickel-based superalloy 718Plus with different ageing heat treatments are fatigued for 500 cycles at room temperature, their microstructures characterised and their slip localisation behaviour quantified via electron channeling contrast imaging (ECCI). A physics-based mesoscopic model is developed to investigate the effects of ageing and loading conditions on cyclic deformation behaviour. The formation of slip bands and evolution of the local dislocation density are used to describe cyclic hardening, while continued precipitate shearing from the accumulation of slip irreversibilities is modelled as the source of cyclic softening. Both mechanisms are then coupled via a parameter for the volume fraction of slip bands. The model successfully reproduces the trends observed for the different conditions, with overaged samples eventually surpassing the cyclic stress of the peak-aged specimens due to a slower softening rate. Curves from the literature for superalloy Nimonic PE16 are also reproduced for different ageing conditions and strain amplitudes. Further electron microscopy near surface cracks reveals the presence of precipitate-free deformation bands only in the underaged condition, which is explained in terms of a saturation point for the shearing process.
Sponsorship
F.D. León-Cázares is grateful for funding from CONACyT, the Cambridge Trust and the Roberto Rocca Education Program. E.I. Galindo-Nava acknowledges funding from RAEng for his research fellowship. We also acknowledge Rolls-Royce plc and the Engineering and Physical Sciences Research Council (EPSRC) for financial support under the Strategic Partnership, Grant Numbers EP/H022309/1 and EP/H500375/1, and thank Rolls-Royce Deutschland for supplying the material.
Funder references
UNIVERSITY OF BIRMINGHAM (FB EPSRC) (EP/H022309/1)
EPSRC (EP/M005607/1)
EPSRC (EP/H500375/1)
Technology Strategy Board (113072)
Embargo Lift Date
2021-01-28
Identifiers
External DOI: https://doi.org/10.1016/j.ijplas.2020.102682
This record's URL: https://www.repository.cam.ac.uk/handle/1810/301656
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Licence URL: https://creativecommons.org/licenses/by-nc-nd/4.0/