Repository logo
 

Direct vs Delayed Triplet Energy Transfer from Organic Semiconductors to Quantum Dots and Implications for Luminescent Harvesting of Triplet Excitons.

Accepted version
Peer-reviewed

No Thumbnail Available

Type

Article

Change log

Authors

Dowland, Simon 
Xiao, James 

Abstract

Hybrid inorganic-organic materials such as quantum dots (QDs) coupled with organic semiconductors have a wide range of optoelectronic applications, taking advantage of the respective materials' strengths. A key area of investigation in such systems is the transfer of triplet exciton states to and from QDs, which has potential applications in the luminescent harvesting of triplet excitons generated by singlet fission, in photocatalysis and photochemical upconversion. While the transfer of energy from QDs to the triplet state of organic semiconductors has been intensely studied in recent years, the mechanism and materials parameters controlling the reverse process, triplet transfer to QDs, have not been well investigated. Here, through a combination of steady-state and time-resolved optical spectroscopy we study the mechanism and energetic dependence of triplet energy transfer from an organic ligand (TIPS-tetracene carboxylic acid) to PbS QDs. Over an energetic range spanning from exothermic (-0.3 eV) to endothermic (+0.1 eV) triplet energy transfer we find that the triplet energy transfer to the QD occurs through a single step process with a clear energy dependence that is consistent with an electron exchange mechanism as described by Marcus-Hush theory. In contrast, the reverse process, energy transfer from the QD to the triplet state of the ligand, does not show any energy dependence in the studied energy range; interestingly, a delayed formation of the triplet state occurs relative to the quantum dots' decay. Based on the energetic dependence of triplet energy transfer we also suggest design criteria for future materials systems where triplet excitons from organic semiconductors are harvested via QDs, for instance in light emitting structures or the harvesting of triplet excitons generated via singlet fission.

Description

Keywords

photon multiplication, quantum dots, singlet fission, solar energy, triplet energy transfer

Journal Title

ACS Nano

Conference Name

Journal ISSN

1936-0851
1936-086X

Volume Title

14

Publisher

American Chemical Society (ACS)

Rights

All rights reserved
Sponsorship
European Research Council (758826)
Engineering and Physical Sciences Research Council (EP/M024873/1)
Engineering and Physical Sciences Research Council (EP/N509929/1)
Engineering and Physical Sciences Research Council (EP/L015978/1)
Engineering and Physical Sciences Research Council (EP/P007767/1)
We thank the Winton Programme for the Physics of Sustainability and the Engineering and Physical Sciences Research Council for funding. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 758826). VG acknowledges funding from the Swedish research council, Vetenskapsrådet 2018-00238. J. R. A. acknowledges Cambridge Commonwealth European and International Trust for financial support. Z. Z. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions grant (No. 842271 – TRITON project). J. X. acknowledges EPSRC Cambridge NanoDTC, EP/L015978/1 for financial support. JEA and AJP acknowledge the U.S. National Science Foundation (DMREF-1627428) for support of organic semiconductor synthesis.