Repository logo
 

Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer.

Accepted version
Peer-reviewed

Change log

Authors

Chopra, Neha 
Tovey, Holly 
Cutts, Ros 
Toms, Christy 

Abstract

Triple negative breast cancer (TNBC) encompasses molecularly different subgroups, with a subgroup harboring evidence of defective homologous recombination (HR) DNA repair. Here, within a phase 2 window clinical trial, RIO trial (EudraCT 2014-003319-12), we investigate the activity of PARP inhibitors in 43 patients with untreated TNBC. The primary end point, decreased Ki67, occured in 12% of TNBC. In secondary end point analyses, HR deficiency was identified in 69% of TNBC with the mutational-signature-based HRDetect assay. Cancers with HRDetect mutational signatures of HR deficiency had a functional defect in HR, assessed by impaired RAD51 foci formation on end of treatment biopsy. Following rucaparib treatment there was no association of Ki67 change with HR deficiency. In contrast, early circulating tumor DNA dynamics identified activity of rucaparib, with end of treatment ctDNA levels suppressed by rucaparib in mutation-signature HR-deficient cancers. In ad hoc analysis, rucaparib induced expression of interferon response genes in HR-deficient cancers. The majority of TNBCs have a defect in DNA repair, identifiable by mutational signature analysis, that may be targetable with PARP inhibitors.

Description

Keywords

Adult, Aged, BRCA1 Protein, BRCA2 Protein, Circulating Tumor DNA, Female, Humans, Indoles, Middle Aged, Poly (ADP-Ribose) Polymerase-1, Poly(ADP-ribose) Polymerase Inhibitors, Rad51 Recombinase, Recombinational DNA Repair, Triple Negative Breast Neoplasms, Whole Genome Sequencing

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

11

Publisher

Springer Science and Business Media LLC

Rights

All rights reserved
Sponsorship
Cancer Research UK (23916)
Cancer Research UK (23433)
Cancer Research UK (25274)