Repository logo
 

Low-Temperature Plasticity in Olivine: Grain Size, Strain Hardening, and the Strength of the Lithosphere

Published version
Peer-reviewed

Type

Article

Change log

Abstract

jats:titleAbstract</jats:title>jats:pPlastic deformation of olivine at relatively low temperatures (i.e., low‐temperature plasticity) likely controls the strength of the lithospheric mantle in a variety of geodynamic contexts. Unfortunately, laboratory estimates of the strength of olivine deforming by low‐temperature plasticity vary considerably from study to study, limiting confidence in extrapolation to geological conditions. Here we present the results of deformation experiments on olivine single crystals and aggregates conducted in a deformation‐DIA at confining pressures of 5 to 9 GPa and temperatures of 298 to 1473 K. These results demonstrate that, under conditions in which low‐temperature plasticity is the dominant deformation mechanism, fine‐grained samples are stronger at yield than coarse‐grained samples, and the yield stress decreases with increasing temperature. All samples exhibited significant strain hardening until an approximately constant flow stress was reached. The magnitude of the increase in stress from the yield stress to the flow stress was independent of grain size and temperature. Cyclical loading experiments revealed a Bauschinger effect, wherein the initial yield strength is higher than the yield strength during subsequent cycles. Both strain hardening and the Bauschinger effect are interpreted to result from the development of back stresses associated with long‐range dislocation interactions. We calibrated a constitutive model based on these observations, and extrapolation of the model to geological conditions predicts that the strength of the lithosphere at yield is low compared to previous experimental predictions but increases significantly with increasing strain. Our results resolve apparent discrepancies in recent observational estimates of the strength of the oceanic lithosphere.</jats:p>

Description

Keywords

plasticity, dislocation, olivine, Hall-Petch, strain hardening, lithosphere

Journal Title

Journal of Geophysical Research: Solid Earth

Conference Name

Journal ISSN

2169-9313
2169-9356

Volume Title

124

Publisher

American Geophysical Union (AGU)
Sponsorship
Support for this research was provided by Natural Environment Research Council (NERC) grant NE/M000966/1 and NSF Division of Earth Sciences grants 1255620, 1464714, and 1550112. D.E.J.A. acknowledges funding from the Royal Academy of Engineering through a research fellowship.