Show simple item record

dc.contributor.authorGodazgar, Hadi
dc.contributor.authorGodazgar, Mahdi
dc.contributor.authorPerry, Malcolm J.
dc.date.accessioned2020-12-25T16:09:09Z
dc.date.available2020-12-25T16:09:09Z
dc.date.issued2020-09-11
dc.date.submitted2020-07-21
dc.identifier.otherjhep09(2020)084
dc.identifier.other13785
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/315612
dc.description.abstractAbstract: We provide a Hamiltonian derivation of recently discovered dual BMS charges. In order to do so, we work in the first order formalism and add to the usual Palatini action, the Holst term, which does not contribute to the equations of motion. We give a method for finding the leading order integrable dual charges à la Wald-Zoupas and construct the corresponding charge algebra. We argue that in the presence of fermions, the relevant term that leads to dual charges is the topological Nieh-Yan term.
dc.languageen
dc.publisherSpringer Berlin Heidelberg
dc.rightsAttribution 4.0 International (CC BY 4.0)en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectRegular Article - Theoretical Physics
dc.subjectBlack Holes in String Theory
dc.subjectClassical Theories of Gravity
dc.subjectSpace-Time Symmetries
dc.titleHamiltonian derivation of dual gravitational charges
dc.typeArticle
dc.date.updated2020-12-25T16:09:08Z
prism.issueIdentifier9
prism.publicationNameJournal of High Energy Physics
prism.volume2020
dc.identifier.doi10.17863/CAM.62718
dcterms.dateAccepted2020-08-11
rioxxterms.versionofrecord10.1007/jhep09(2020)084
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidGodazgar, Mahdi [0000-0001-8926-7745]
dc.identifier.eissn1029-8479
dc.identifier.arxiv2007.07144v2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's licence is described as Attribution 4.0 International (CC BY 4.0)