Show simple item record

dc.contributor.authorCarnegie, Cloudy
dc.contributor.authorUrbieta, Mattin
dc.contributor.authorChikkaraddy, Rohit
dc.contributor.authorde Nijs, Bart
dc.contributor.authorGriffiths, Jack
dc.contributor.authorDeacon, William M.
dc.contributor.authorKamp, Marlous
dc.contributor.authorZabala, Nerea
dc.contributor.authorAizpurua, Javier
dc.contributor.authorBaumberg, Jeremy J.
dc.date.accessioned2021-02-02T17:13:43Z
dc.date.available2021-02-02T17:13:43Z
dc.date.issued2020-02-03
dc.date.submitted2019-05-02
dc.identifier.others41467-019-14150-w
dc.identifier.other14150
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/317016
dc.description.abstractAbstract: The dynamic restructuring of metal nanoparticle surfaces is known to greatly influence their catalytic, electronic transport, and chemical binding functionalities. Here we show for the first time that non-equilibrium atomic-scale lattice defects can be detected in nanoparticles by purely optical means. These fluctuating states determine interface electronic transport for molecular electronics but because such rearrangements are low energy, measuring their rapid dynamics on single nanostructures by X-rays, electron beams, or tunnelling microscopies, is invasive and damaging. We utilise nano-optics at the sub-5nm scale to reveal rapid (on the millisecond timescale) evolution of defect morphologies on facets of gold nanoparticles on a mirror. Besides dynamic structural information, this highlights fundamental questions about defining bulk plasma frequencies for metals probed at the nanoscale.
dc.languageen
dc.publisherNature Publishing Group UK
dc.rightsAttribution 4.0 International (CC BY 4.0)en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectArticle
dc.subject/639/301/1005/1007
dc.subject/639/301/357/354
dc.subject/639/925/927/1021
dc.subject/639/624/399/1098
dc.subject/140/125
dc.subject/132
dc.subject/132/124
dc.subject/119/118
dc.subjectarticle
dc.titleFlickering nanometre-scale disorder in a crystal lattice tracked by plasmonic flare light emission
dc.typeArticle
dc.date.updated2021-02-02T17:13:43Z
prism.issueIdentifier1
prism.publicationNameNature Communications
prism.volume11
dc.identifier.doi10.17863/CAM.64127
dcterms.dateAccepted2019-12-18
rioxxterms.versionofrecord10.1038/s41467-019-14150-w
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidChikkaraddy, Rohit [0000-0002-3840-4188]
dc.contributor.orcidde Nijs, Bart [0000-0002-8234-723X]
dc.contributor.orcidKamp, Marlous [0000-0003-4915-1312]
dc.contributor.orcidZabala, Nerea [0000-0002-1619-7544]
dc.contributor.orcidBaumberg, Jeremy J. [0000-0002-9606-9488]
dc.identifier.eissn2041-1723
pubs.funder-project-idRCUK | Engineering and Physical Sciences Research Council (EPSRC) (EP/N016920/1, EP/L027151/1, EP/L015978/1)


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's licence is described as Attribution 4.0 International (CC BY 4.0)