Repository logo
 

Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy.

Published version
Peer-reviewed

Change log

Authors

Abstract

Understanding single-molecule chemical dynamics of surface ligands is of critical importance to reveal their individual pathways and, hence, roles in catalysis, which ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that provides sufficient enhancement to enable direct tracking of chemical trajectories of single surface-bound molecules via vibrational spectroscopy. Atomic protrusions are laser-induced within plasmonic nanojunctions to concentrate light to atomic length scales, optically isolating individual molecules. By stabilizing these atomic sites, we unveil single-molecule deprotonation and binding dynamics under ambient conditions. High-speed field-enhanced spectroscopy allows us to monitor chemical switching of a single carboxylic group between three discrete states. Combining this with theoretical calculation identifies reversible proton transfer dynamics (yielding effective single-molecule pH) and switching between molecule-metal coordination states, where the exact chemical pathway depends on the intitial protonation state. These findings open new domains to explore interfacial single-molecule mechanisms and optical manipulation of their reaction pathways.

Description

Keywords

51 Physical Sciences, 34 Chemical Sciences, 3406 Physical Chemistry

Journal Title

Sci Adv

Conference Name

Journal ISSN

2375-2548
2375-2548

Volume Title

7

Publisher

American Association for the Advancement of Science (AAAS)
Sponsorship
European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (829067)
European Commission Horizon 2020 (H2020) Research Infrastructures (RI) (861950)
Engineering and Physical Sciences Research Council (EP/L015978/1)
Engineering and Physical Sciences Research Council (EP/L027151/1)
Engineering and Physical Sciences Research Council (EP/S022953/1)
Engineering and Physical Sciences Research Council (EP/P029426/1)
Engineering and Physical Sciences Research Council (EP/R020965/1)
Engineering and Physical Sciences Research Council (EP/L015889/1)
Isaac Newton Trust (18.08(K))
Leverhulme Trust (ECF-2018-021)
Engineering and Physical Sciences Research Council (EP/G060649/1)
H2020 European Research Council Engineering and Physical Sciences Research Council (EPSRC) Leverhulme Trust Isaac Newton Trust
Relationships
Is supplemented by:
Is source of: