Repository logo
 

Testing the consistency of dust laws in SN Ia host galaxies: a BayeSN examination of Foundation DR1

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Thorp, S 
Mandel, KS 
Jones, DO 
Ward, SM 
Narayan, G 

Abstract

jats:titleAbstract</jats:title> jats:pWe apply BayeSN, our new hierarchical Bayesian model for the SEDs of Type Ia supernovae (SNe Ia), to analyse the griz light curves of 157 nearby SNe Ia (0.015 &lt; z &lt; 0.08) from the public Foundation DR1 dataset. We train a new version of BayeSN, continuous from 0.35–0.95 μm, which we use to model the properties of SNe Ia in the rest-frame z-band, study the properties of dust in their host galaxies, and construct a Hubble diagram of SN Ia distances determined from full griz light curves. Our griz Hubble diagram has a low total RMS of 0.13 mag using BayeSN, compared to 0.16 mag using SALT2. Additionally, we test the consistency of the dust law RV between low- and high-mass host galaxies by using our model to fit the full time- and wavelength-dependent SEDs of SNe Ia up to moderate reddening (peak apparent B − V ≲ 0.3). Splitting the population at the median host mass, we find RV = 2.84 ± 0.31 in low-mass hosts, and RV = 2.58 ± 0.23 in high-mass hosts, both consistent with the global value of RV = 2.61 ± 0.21 that we estimate for the full sample. For all choices of mass split we consider, RV is consistent across the step within ≲ 1.2σ. Modelling population distributions of dust laws in low- and high-mass hosts, we find that both subsamples are highly consistent with the full sample’s population mean μ(RV) = 2.70 ± 0.25 with a 95 per cent upper bound on the population σ(RV) &lt; 0.61. The RV population means are consistent within ≲ 1.2σ. We find that simultaneous fitting of host-mass-dependent dust properties within our hierarchical model does not account for the conventional mass step.</jats:p>

Description

Keywords

methods: statistical, supernovae: general, dust, extinction, distance scale

Journal Title

Monthly Notices of the Royal Astronomical Society

Conference Name

Journal ISSN

0035-8711
1365-2966

Volume Title

Publisher

Oxford University Press (OUP)

Rights

All rights reserved
Sponsorship
STFC (2118607)
European Commission Horizon 2020 (H2020) ERC (101002652)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (873089)