Show simple item record

dc.contributor.authorWolff, Christian M
dc.contributor.authorBourelle, Sean A
dc.contributor.authorPhuong, Le Quang
dc.contributor.authorKurpiers, Jona
dc.contributor.authorFeldmann, Sascha
dc.contributor.authorCaprioglio, Pietro
dc.contributor.authorMarquez, Jose Antonio
dc.contributor.authorWolansky, Jakob
dc.contributor.authorUnold, Thomas
dc.contributor.authorStolterfoht, Martin
dc.contributor.authorShoaee, Safa
dc.contributor.authorDeschler, Felix
dc.contributor.authorNeher, Dieter
dc.date.accessioned2021-10-21T07:31:11Z
dc.date.available2021-10-21T07:31:11Z
dc.date.issued2021-12
dc.date.submitted2021-06-14
dc.identifier.issn1614-6832
dc.identifier.otheraenm202101823
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/329701
dc.descriptionFunder: EPSRC; Id: http://dx.doi.org/10.13039/501100000266
dc.description.abstractAbstract: Ideally, the charge carrier lifetime in a solar cell is limited by the radiative free carrier recombination in the absorber which is a second‐order process. Yet, real‐life cells suffer from severe nonradiative recombination in the bulk of the absorber, at interfaces, or within other functional layers. Here, the dynamics of photogenerated charge carriers are probed directly in pin‐type mixed halide perovskite solar cells with an efficiency >20%, using time‐resolved optical absorption spectroscopy and optoelectronic techniques. The charge carrier dynamics in complete devices is fully consistent with a superposition of first‐, second‐, and third‐order recombination processes, with no admixture of recombination pathways with non‐integer order. Under solar illumination, recombination in the studied solar cells proceeds predominantly through nonradiative first‐order recombination with a lifetime of 250 ns, which competes with second‐order free charge recombination which is mostly if not entirely radiative. Results from the transient experiments are further employed to successfully explain the steady‐state solar cell properties over a wide range of illumination intensities. It is concluded that improving carrier lifetimes to >3 µs will take perovskite devices into the radiative regime, where their performance will benefit from photon‐recycling.
dc.languageen
dc.publisherWiley
dc.subjectResearch Article
dc.subjectResearch Articles
dc.subjectcarrier lifetimes
dc.subjectinterfacial recombination
dc.subjectperovskite solar cells
dc.subjectrecombination dynamics
dc.subjecttime resolved spectroscopy
dc.titleOrders of Recombination in Complete Perovskite Solar Cells – Linking Time‐Resolved and Steady‐State Measurements
dc.typeArticle
dc.date.updated2021-10-21T07:31:10Z
prism.publicationNameAdvanced Energy Materials
dc.identifier.doi10.17863/CAM.77147
rioxxterms.versionofrecord10.1002/aenm.202101823
rioxxterms.versionAO
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidWolff, Christian M [0000-0002-7210-1869]
dc.contributor.orcidFeldmann, Sascha [0000-0002-6583-5354]
dc.identifier.eissn1614-6840
pubs.funder-project-idDeutsche Forschungsgemeinschaft (SURPRISE 423749265)
pubs.funder-project-idDFG Emmy Noether Program (387651688)
pubs.funder-project-idMarie Skłodowska Curie fellowship (101033077)
cam.issuedOnline2021-10-20


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record