Repository logo
 

The Chromatic Structure of Dense Graphs


Loading...
Thumbnail Image

Type

Change log

Authors

Illingworth, Frederick  ORCID logo  https://orcid.org/0000-0001-5350-2379

Abstract

This thesis focusses on extremal graph theory, the study of how local constraints on a graph affect its macroscopic structure. We primarily consider the chromatic structure: whether a graph has or is close to having some (low) chromatic number.

Chapter 2 is the slight exception. We consider an induced version of the classical Turán problem. Introduced by Loh, Tait, Timmons, and Zhou, the induced Turán number ex(n, {H, F-ind}) is the greatest number of edges in an n-vertex graph with no copy of H and no induced copy of F. We asymptotically determine ex(n, {H, F-ind}) for H not bipartite and F neither an independent set nor a complete bipartite graph. We also improve the upper bound for ex(n, {H, K_{2, t}-ind}) as well as the lower bound for the clique number of graphs that have some fixed edge density and no induced K_{2, t}.

The next three chapters form the heart of the thesis. Chapters 3 and 4 consider the Erdős-Simonovits question for locally r-colourable graphs: what are the structure and chromatic number of graphs with large minimum degree and where every neighbourhood is r-colourable? Chapter 3 deals with the locally bipartite case and Chapter 4 with the general case.

While the subject of Chapters 3 and 4 is a natural local to global colouring question, it is also essential for determining the minimum degree stability of H-free graphs, the focus of Chapter 5. Given a graph H of chromatic number r + 1, this asks for the minimum degree that guarantees that an H-free graph is close to r-partite. This is analogous to the classical edge stability of Erdős and Simonovits. We also consider the question for the family of graphs to which H is not homomorphic, showing that it has the same answer.

Chapter 6 considers sparse analogues of the results of Chapters 3 to 5 obtaining the thresholds at which the sparse problem degenerates away from the dense one.

Finally, Chapter 7 considers a chromatic Ramsey problem first posed by Erdős: what is the greatest chromatic number of a triangle-free graph on $n$ vertices or with m edges? We improve the best known bounds and obtain tight (up to a constant factor) bounds for the list chromatic number, answering a question of Cames van Batenburg, de Joannis de Verclos, Kang, and Pirot.

Description

Date

2021-07-01

Advisors

Thomason, Andrew

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge

Rights and licensing

Except where otherwised noted, this item's license is described as All Rights Reserved
Sponsorship
EPSRC (2114463)