Numerical Simulation of AC Loss in the Armature Windings of Two 50 Kw-Class All-HTS Motors with Different Pole Shapes
View / Open Files
Publication Date
2022Journal Title
IEEE Transactions on Applied Superconductivity
ISSN
1051-8223
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Type
Article
This Version
AM
Metadata
Show full item recordCitation
You, S., Kalsi, S., Ainslie, M., Badcock, R., Long, N., & Jiang, Z. (2022). Numerical Simulation of AC Loss in the Armature Windings of Two 50 Kw-Class All-HTS Motors with Different Pole Shapes. IEEE Transactions on Applied Superconductivity https://doi.org/10.1109/TASC.2021.3135487
Abstract
Achieving low AC-loss armature windings is a key challenge to enable all-HTS motors. Large AC-loss is induced in the HTS armature windings through interaction with the rotating magnetic field generated by the rotor. To reduce the AC loss in the armature windings, it is important to minimize the impact of the rotating magnetic field, especially the component perpendicular to the broad face of REBCO conductors. This work presents two different 1500 rpm, 50 kW all-HTS motor designs with different iron pole shapes: one with pole shoes on the iron core for diverting the magnetic flux around the coil windings, and one without pole shoes. REBCO coated conductors are considered for both the armature and field windings and 2D finite-element models of both designs are built using the T-A formulation and moving meshes. System-wise analysis of the motor in terms of weight and efficiency is discussed based on the simulated AC loss results. The simulation results show that, at 65 K, flux diverting pole shoes provide a 51% AC loss reduction in the HTS armature windings, without weight penalty or motor power rating reduction. Furthermore, simulation results at 20 K show that the AC loss decreases with decreasing operating temperature due to a decrease in the penetrated field in the HTS windings, which reduces the magnetization loss component.
Keywords
High-temperature superconductors, Windings, Footwear, Stator cores, Steel, Magnetic fields, Finite element analysis, AC loss, All-HTS motors, flux diverters, iron cores, moving meshes, T-A formulation
Sponsorship
New Zealand Ministry of Business, Innovation and Employment (MBIE);
Strategic Science Investment Fund "Advanced Energy Technology Platform"; Engineering and Physical Sciences Research Council (EPSRC) Early Career Fellowship, EP/P020313/1.
Funder references
Engineering and Physical Sciences Research Council (EP/P020313/1)
Identifiers
External DOI: https://doi.org/10.1109/TASC.2021.3135487
This record's URL: https://www.repository.cam.ac.uk/handle/1810/331373
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk