X-ray Spectroscopy of Cool Core Galaxy Clusters
View / Open Files
Authors
Liu, Haonan
Advisors
Fabian, Andrew
Pinto, Ciro
Date
2021-09-22Awarding Institution
University of Cambridge
Qualification
Doctor of Philosophy (PhD)
Type
Thesis
Metadata
Show full item recordCitation
Liu, H. (2021). X-ray Spectroscopy of Cool Core Galaxy Clusters (Doctoral thesis). https://doi.org/10.17863/CAM.79425
Abstract
In this thesis, I present the results of my PhD research on the cooling flow problem in galaxy clusters. The centre of relaxed galaxy clusters has a short radiative cooling time suggesting the presence of a massive cooling flow. However, early studies using high resolution X-ray spectroscopy indicated much lower levels of cooling rate. AGN feedback is thought to be the most likely energy source to balance radiative cooling, though the energy transport and dissipation mechanisms are still under debate. In this work, I study whether AGN feedback can actually balance radiative cooling in a large number of galaxy clusters using high resolution X-ray spectroscopy.
The first chapter contains the necessary background of the cooling flow problem and AGN feedback. This is followed by a chapter describing data reduction of XMM-Newton observations. In the third chapter, I present a study of 45 nearby cool core galaxy clusters and groups, where I measure the radiative cooling rate in the softest X-ray band. Then I select a small sub sample of bright clusters to understand the mass temperature profile of the gas in Chapter 4. In Chapter 5, I present a deep study of recent XMM-Newton observations of two luminous clusters at intermediate redshift. Finally, I extend my research on 40 more clusters within a much larger range of distances corresponding to redshift up to 0.6.
Keywords
X-rays, Galaxy clusters
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.79425
Rights
Attribution 4.0 International (CC BY 4.0)
Licence URL: https://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk