Understanding stress-induced disorder and breakage in organic crystals: beyond crystal structure anisotropy.
View / Open Files
Authors
Goh, Wei-Pin
Cattle, James
Hondow, Nicole
Drummond-Brydson, Rik
Ghadiri, Mojtaba
Sinha, Kushal
Ho, Raimundo
Nere, Nandkishor K
Bordawekar, Shailendra
Publication Date
2021-11-03Journal Title
Chem Sci
ISSN
2041-6520
Publisher
Royal Society of Chemistry (RSC)
Volume
12
Issue
42
Pages
14270-14280
Type
Article
This Version
VoR
Physical Medium
Electronic-eCollection
Metadata
Show full item recordCitation
Schneider-Rauber, G., Arhangelskis, M., Goh, W., Cattle, J., Hondow, N., Drummond-Brydson, R., Ghadiri, M., et al. (2021). Understanding stress-induced disorder and breakage in organic crystals: beyond crystal structure anisotropy.. Chem Sci, 12 (42), 14270-14280. https://doi.org/10.1039/d1sc03095g
Abstract
Crystal engineering has advanced the strategies for design and synthesis of organic solids with the main focus being on customising the properties of the materials. Research in this area has a significant impact on large-scale manufacturing, as industrial processes may lead to the deterioration of such properties due to stress-induced transformations and breakage. In this work, we investigate the mechanical properties of structurally related labile multicomponent solids of carbamazepine (CBZ), namely the dihydrate (CBZ·2H2O), a cocrystal of CBZ with 1,4-benzoquinone (2CBZ·BZQ) and the solvates with formamide and 1,4-dioxane (CBZ·FORM and 2CBZ·DIOX, respectively). The effect of factors that are external (e.g. impact stressing) and/or internal (e.g. phase transformations and thermal motion) to the crystals are evaluated. In comparison to the other CBZ multicomponent crystal forms, CBZ·2H2O crystals tolerate less stress and are more susceptible to breakage. It is shown that this poor resistance to fracture may be a consequence of the packing of CBZ molecules and the orientation of the principal molecular axes in the structure relative to the cleavage plane. It is concluded, however, that the CBZ lattice alone is not accountable for the formation of cracks in the crystals of CBZ·2H2O. The strength and the temperature-dependence of electrostatic interactions, such as hydrogen bonds between CBZ and coformer, appear to influence the levels of stress to which the crystals are subjected that lead to fracture. Our findings show that the appropriate selection of coformer in multicomponent crystal forms, targetting superior mechanical properties, needs to account for the intrinsic stress generated by molecular vibrations and not solely by crystal anisotropy. Structural defects within the crystal lattice, although highly influenced by the crystallisation conditions and which are especially difficult to control in organic solids, may also affect breakage.
Identifiers
External DOI: https://doi.org/10.1039/d1sc03095g
This record's URL: https://www.repository.cam.ac.uk/handle/1810/332259
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk