Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis.
View / Open Files
Authors
Wagner, Andreas
Zacarias, Sónia
Publication Date
2022-02-04Journal Title
ACS Catal
ISSN
2155-5435
Publisher
American Chemical Society (ACS)
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Badiani, V., Cobb, S., Wagner, A., Oliveira, A. R., Zacarias, S., Pereira, I. A., & Reisner, E. (2022). Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis.. ACS Catal https://doi.org/10.1021/acscatal.1c04317
Abstract
The immobilization of redox enzymes on electrodes enables the efficient and selective electrocatalysis of useful reactions such as the reversible interconversion of dihydrogen (H2) to protons (H+) and formate to carbon dioxide (CO2) with hydrogenase (H2ase) and formate dehydrogenase (FDH), respectively. However, their immobilization on electrodes to produce electroactive protein films for direct electron transfer (DET) at the protein-electrode interface is not well understood, and the reasons for their activity loss remain vague, limiting their performance often to hour timescales. Here, we report the immobilization of [NiFeSe]-H2ase and [W]-FDH from Desulfovibrio vulgaris Hildenborough on a range of charged and neutral self-assembled monolayer (SAM)-modified gold electrodes with varying hydrogen bond (H-bond) donor capabilities. The key factors dominating the activity and stability of the immobilized enzymes are determined using protein film voltammetry (PFV), chronoamperometry (CA), and electrochemical quartz crystal microbalance (E-QCM) analysis. Electrostatic and H-bonding interactions are resolved, with electrostatic interactions responsible for enzyme orientation while enzyme desorption is strongly limited when H-bonding is present at the enzyme-electrode interface. Conversely, enzyme stability is drastically reduced in the absence of H-bonding, and desorptive enzyme loss is confirmed as the main reason for activity decay by E-QCM during CA. This study provides insights into the possible reasons for the reduced activity of immobilized redox enzymes and the role of film loss, particularly H-bonding, in stabilizing bioelectrode performance, promoting avenues for future improvements in bioelectrocatalysis.
Relationships
Is supplemented by: https://doi.org/10.17863/CAM.79916
Sponsorship
European Research Council (682833)
Leverhulme Trust (via Imperial College London) (P80336)
Engineering and Physical Sciences Research Council (EP/L016087/1)
Identifiers
External DOI: https://doi.org/10.1021/acscatal.1c04317
This record's URL: https://www.repository.cam.ac.uk/handle/1810/332610
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk