Research data supporting "PPARα-independent effects of nitrate supplementation on skeletal muscle metabolism in hypoxia"
View / Open Files
Authors
Horscroft, JA
Devaux, Jules
Strang Steel, Alice
Clark, Anna
Philp, Andrew
Harridge, Stephen
Murray, AJ
Publication Date
2022-01-13Type
Dataset
Metadata
Show full item recordCitation
O'Brien, K., Horscroft, J., Devaux, J., Lindsay, R., Strang Steel, A., Clark, A., Philp, A., et al. (2022). Research data supporting "PPARα-independent effects of nitrate supplementation on skeletal muscle metabolism in hypoxia" [Dataset]. https://doi.org/10.17863/CAM.25657
Description
Data supporting publication. Article abstract at https://doi.org/10.1016/j.bbadis.2018.07.027: "Hypoxia is a feature of many disease states where convective oxygen delivery is impaired, and is known to suppress oxidative metabolism. Acclimation to hypoxia thus requires metabolic remodelling, however hypoxia tolerance may be aided by dietary nitrate supplementation. Nitrate improves tissue oxygenation and has been shown to modulate skeletal muscle tissue metabolism via transcriptional changes, including through the activation of peroxisome proliferator- activated receptor alpha (PPARα), a master regulator of fat metabolism. Here we investigated whether nitrate supplementation protects skeletal muscle mitochondrial function in hypoxia and whether PPARα is required for this effect. Wild-type and PPARα knockout (PPARα-/-) mice were supplemented with sodium nitrate via the drinking water or sodium chloride as control, and exposed to environmental hypoxia (10% O2) or normoxia for 4 weeks. Hypoxia suppressed mitochondrial respiratory function in mouse soleus, an effect partially alleviated through nitrate supplementation, but occurring independently of PPARα. Specifically, hypoxia resulted in 26% lower mass specific fatty acid-supported LEAK respiration and 23% lower pyruvate-supported oxidative phosphorylation capacity. Hypoxia also resulted in 24% lower citrate synthase activity in mouse soleus, possibly indicating a loss of mitochondrial content. These changes were not seen, however, in hypoxic mice when supplemented with dietary nitrate, indicating a nitrate dependent preservation of mitochondrial function. Moreover, this was observed in both wild-type and PPARα-/- mice. Our results support the notion that nitrate supplementation can aid hypoxia tolerance and indicate that nitrate can exert effects independently of PPARα."
Format
MS Excel
Keywords
muscle, mitochondria, hypoxia, metabolism, nitrate
Relationships
Sponsorship
BBSRC, RCUK
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.25657
Rights
Attribution 4.0 International (CC BY 4.0)
Licence URL: https://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk