Research data supporting 'Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: enhancing production and purity'
View / Open Files
Authors
Shepherd, Jennifer H
Howard, Daniel
Waller, Amie
Foster, Holly Rebecca
Muller, Annett
Evans, Amanda L
Arumugam, Meera
Bouët Chalon, Guénaëlle
Vriend, Eleonora
Davidenko, Natalia
Publication Date
2022-01-21Type
Dataset
Metadata
Show full item recordCitation
Shepherd, J. H., Howard, D., Waller, A., Foster, H. R., Muller, A., Moreau, T., Evans, A. L., et al. (2022). Research data supporting 'Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: enhancing production and purity' [Dataset]. https://doi.org/10.17863/CAM.26141
Description
Platelet transfusions are a key treatment option for a range of life threatening conditions including cancer, chemotherapy and surgery. Efficient ex vivo systems to generate donor independent platelets in clinically relevant numbers could provide a useful substitute. Large quantities of megakaryocytes (MKs) can be produced from human pluripotent stem cells, but in 2D culture the ratio of platelets harvested from MK cells has been limited and restricts production rate. The development of biomaterial cell supports that replicate vital hematopoietic micro-environment cues are one strategy that may increase in vitro platelet production rates from iPS derived Megakaryocyte cells.
In this paper, we present the results obtained generating, simulating and using a novel structurally-graded collagen scaffold within a flow bioreactor system seeded with programmed stem cells. Theoretical analysis of porosity using micro-computed tomography analysis and synthetic micro-particle filtration provided a predictive tool to tailor cell distribution throughout the material. When used with MK programmed stem cells the graded scaffolds influenced cell location while maintaining the ability to continuously release metabolically active CD41+ CD42+ functional platelets. This scaffold design and novel fabrication technique offers a significant advance in understanding the influence of scaffold architectures on cell seeding, retention and platelet production.
Format
Microsoft Office Excel, Microsoft Office Word
Keywords
scaffold architecture, bioreactor, Parallel flow membrane filter, collagen, bone marrow model, depth straining, interconnectivity, settling zones, shear flow, Human Induced Pluripotent Stem Cells, Forward programming, Megakaryocytes, platelets
Relationships
Sponsorship
European Research Council (320598)
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.26141
Rights
Attribution 4.0 International (CC BY 4.0)
Licence URL: https://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.