Show simple item record

dc.contributor.authorBacon, Conor
dc.contributor.authorJohnson, JH
dc.contributor.authorWhite, Robert
dc.contributor.authorRawlinson, Nicholas
dc.date.accessioned2022-01-28T16:37:24Z
dc.date.available2022-01-28T16:37:24Z
dc.date.issued2022-01
dc.date.submitted2021-06-28
dc.identifier.issn2169-9313
dc.identifier.otherjgrb55395
dc.identifier.other2021jb022655
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333183
dc.description.abstractAbstract: The Icelandic crust is a product of its unique tectonic setting, where the interaction of an ascending mantle plume and the Mid‐Atlantic Ridge has caused elevated mantle melting, with the melt accreted and cooled in the crust to form an oceanic plateau. We investigate the strength and orientation of seismic anisotropy in the upper crust of the Northern Volcanic Zone using local earthquake shear‐wave splitting, with a view to understanding how the contemporary stress field may influence sub‐wavelength structure and processes. This is achieved using a data set comprising > $ > $ 50,000 earthquakes located in the top 10 km of the crust, recorded by up to 70 stations over a 9 year period. We find that anisotropy is largely confined to the top 3–4 km of the crust, with an average delay time of 0.10 ± 0.05 s, and an average orientation of the fast axis of anisotropy of N014°E ± 27°, which is perpendicular to the spreading direction of the Eurasian and North American plates (N106°E). These results are consistent with the presence of rift‐parallel cracks that gradually close with depth, the preferential opening of which is controlled by the regional stress field. Lateral variations in the strength of shear wave anisotropy (SWA) reveal that regions with the highest concentrations of earthquakes have the highest SWA values (∼10%), which reflects the presence of significant brittle deformation. Disruption of the orientation of the fast axis of anisotropy around Askja volcano can be related to local stress changes caused by underlying magmatic processes.
dc.languageen
dc.publisherAmerican Geophysical Union (AGU)
dc.subjectSeismology
dc.subjectATMOSPHERIC COMPOSITION AND STRUCTURE
dc.subjectAir/sea constituent fluxes
dc.subjectVolcanic effects
dc.subjectBIOGEOSCIENCES
dc.subjectClimate dynamics
dc.subjectModeling
dc.subjectCOMPUTATIONAL GEOPHYSICS
dc.subjectNumerical solutions
dc.subjectCRYOSPHERE
dc.subjectAvalanches
dc.subjectMass balance
dc.subjectGEODESY AND GRAVITY
dc.subjectOcean monitoring with geodetic techniques
dc.subjectOcean/Earth/atmosphere/hydrosphere/cryosphere interactions
dc.subjectGlobal change from geodesy
dc.subjectGLOBAL CHANGE
dc.subjectAbrupt/rapid climate change
dc.subjectClimate variability
dc.subjectEarth system modeling
dc.subjectImpacts of global change
dc.subjectLand/atmosphere interactions
dc.subjectOceans
dc.subjectRegional climate change
dc.subjectSea level change
dc.subjectSolid Earth
dc.subjectWater cycles
dc.subjectHYDROLOGY
dc.subjectClimate impacts
dc.subjectHydrological cycles and budgets
dc.subjectINFORMATICS
dc.subjectMARINE GEOLOGY AND GEOPHYSICS
dc.subjectGravity and isostasy
dc.subjectATMOSPHERIC PROCESSES
dc.subjectClimate change and variability
dc.subjectClimatology
dc.subjectGeneral circulation
dc.subjectOcean/atmosphere interactions
dc.subjectRegional modeling
dc.subjectTheoretical modeling
dc.subjectOCEANOGRAPHY: GENERAL
dc.subjectClimate and interannual variability
dc.subjectNumerical modeling
dc.subjectNATURAL HAZARDS
dc.subjectAtmospheric
dc.subjectGeological
dc.subjectOceanic
dc.subjectPhysical modeling
dc.subjectClimate impact
dc.subjectRisk
dc.subjectDisaster risk analysis and assessment
dc.subjectOCEANOGRAPHY: PHYSICAL
dc.subjectAir/sea interactions
dc.subjectDecadal ocean variability
dc.subjectOcean influence of Earth rotation
dc.subjectSea level: variations and mean
dc.subjectSurface waves and tides
dc.subjectTsunamis and storm surges
dc.subjectPALEOCEANOGRAPHY
dc.subjectPOLICY SCIENCES
dc.subjectBenefit‐cost analysis
dc.subjectRADIO SCIENCE
dc.subjectRadio oceanography
dc.subjectSEISMOLOGY
dc.subjectOceanic crust
dc.subjectMid‐ocean ridges
dc.subjectVolcano seismology
dc.subjectGeneral or miscellaneous
dc.subjectEarthquake ground motions and engineering seismology
dc.subjectVOLCANOLOGY
dc.subjectVolcano/climate interactions
dc.subjectAtmospheric effects
dc.subjectVolcano monitoring
dc.subjectEffusive volcanism
dc.subjectMud volcanism
dc.subjectExplosive volcanism
dc.subjectVolcanic hazards and risks
dc.subjectResearch Article
dc.subjectseismic anisotropy
dc.subjectAskja
dc.subjectIceland
dc.subjectshear‐wave splitting
dc.subjectstress modeling
dc.titleOn the Origin of Seismic Anisotropy in the Shallow Crust of the Northern Volcanic Zone, Iceland
dc.typeArticle
dc.date.updated2022-01-28T16:37:23Z
prism.issueIdentifier1
prism.publicationNameJournal of Geophysical Research: Solid Earth
prism.volume127
dc.identifier.doi10.17863/CAM.80606
dcterms.dateAccepted2021-12-12
rioxxterms.versionofrecord10.1029/2021JB022655
rioxxterms.versionAO
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidBacon, Conor [0000-0002-2558-8555]
dc.contributor.orcidJohnson, JH [0000-0003-3628-6402]
dc.contributor.orcidWhite, Robert [0000-0002-2972-397X]
dc.contributor.orcidRawlinson, Nicholas [0000-0002-6977-291X]
dc.identifier.eissn2169-9356
cam.issuedOnline2022-01-20


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record