MultiMAP: dimensionality reduction and integration of multimodal data.
dc.contributor.author | Jain, Mika Sarkin | |
dc.contributor.author | Polanski, Krzysztof | |
dc.contributor.author | Conde, Cecilia Dominguez | |
dc.contributor.author | Chen, Xi | |
dc.contributor.author | Park, Jongeun | |
dc.contributor.author | Mamanova, Lira | |
dc.contributor.author | Knights, Andrew | |
dc.contributor.author | Botting, Rachel A | |
dc.contributor.author | Stephenson, Emily | |
dc.contributor.author | Haniffa, Muzlifah | |
dc.contributor.author | Lamacraft, Austen | |
dc.contributor.author | Efremova, Mirjana | |
dc.contributor.author | Teichmann, Sarah A | |
dc.date.accessioned | 2022-01-28T16:42:02Z | |
dc.date.available | 2022-01-28T16:42:02Z | |
dc.date.issued | 2021-12-20 | |
dc.identifier.issn | 1474-7596 | |
dc.identifier.other | 34930412 | |
dc.identifier.other | PMC8686224 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/333249 | |
dc.description.abstract | Multimodal data is rapidly growing in many fields of science and engineering, including single-cell biology. We introduce MultiMAP, a novel algorithm for dimensionality reduction and integration. MultiMAP can integrate any number of datasets, leverages features not present in all datasets, is not restricted to a linear mapping, allows the user to specify the influence of each dataset, and is extremely scalable to large datasets. We apply MultiMAP to single-cell transcriptomics, chromatin accessibility, methylation, and spatial data and show that it outperforms current approaches. On a new thymus dataset, we use MultiMAP to integrate cells along a temporal trajectory. This enables quantitative comparison of transcription factor expression and binding site accessibility over the course of T cell differentiation, revealing patterns of expression versus binding site opening kinetics. | |
dc.language | eng | |
dc.publisher | Springer Science and Business Media LLC | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | nlmid: 100960660 | |
dc.source | essn: 1474-760X | |
dc.subject | Algorithms | |
dc.subject | Chromatin | |
dc.subject | Chromosome Mapping | |
dc.subject | Chromosomes, Human | |
dc.subject | Gene Expression Regulation | |
dc.subject | Genetic Markers | |
dc.subject | Genomics | |
dc.subject | Humans | |
dc.subject | Single-Cell Analysis | |
dc.subject | Software | |
dc.subject | Transcription Factors | |
dc.subject | Transcriptome | |
dc.title | MultiMAP: dimensionality reduction and integration of multimodal data. | |
dc.type | Article | |
dc.date.updated | 2022-01-28T16:42:02Z | |
prism.issueIdentifier | 1 | |
prism.publicationName | Genome Biol | |
prism.volume | 22 | |
dc.identifier.doi | 10.17863/CAM.80672 | |
dcterms.dateAccepted | 2021-12-03 | |
rioxxterms.versionofrecord | 10.1186/s13059-021-02565-y | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.contributor.orcid | Efremova, Mirjana [0000-0002-8107-9974] | |
dc.identifier.eissn | 1474-760X | |
pubs.funder-project-id | Barts Charity (MGU045) | |
pubs.funder-project-id | Wellcome Trust (WT206194, WT211276/Z/18/Z) | |
pubs.funder-project-id | Chan Zuckerberg Initiative (CZF2019-002445) | |
cam.issuedOnline | 2021-12-20 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router