Show simple item record

dc.contributor.authorJain, Mika Sarkin
dc.contributor.authorPolanski, Krzysztof
dc.contributor.authorConde, Cecilia Dominguez
dc.contributor.authorChen, Xi
dc.contributor.authorPark, Jongeun
dc.contributor.authorMamanova, Lira
dc.contributor.authorKnights, Andrew
dc.contributor.authorBotting, Rachel A
dc.contributor.authorStephenson, Emily
dc.contributor.authorHaniffa, Muzlifah
dc.contributor.authorLamacraft, Austen
dc.contributor.authorEfremova, Mirjana
dc.contributor.authorTeichmann, Sarah A
dc.date.accessioned2022-01-28T16:42:02Z
dc.date.available2022-01-28T16:42:02Z
dc.date.issued2021-12-20
dc.identifier.issn1474-7596
dc.identifier.other34930412
dc.identifier.otherPMC8686224
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333249
dc.description.abstractMultimodal data is rapidly growing in many fields of science and engineering, including single-cell biology. We introduce MultiMAP, a novel algorithm for dimensionality reduction and integration. MultiMAP can integrate any number of datasets, leverages features not present in all datasets, is not restricted to a linear mapping, allows the user to specify the influence of each dataset, and is extremely scalable to large datasets. We apply MultiMAP to single-cell transcriptomics, chromatin accessibility, methylation, and spatial data and show that it outperforms current approaches. On a new thymus dataset, we use MultiMAP to integrate cells along a temporal trajectory. This enables quantitative comparison of transcription factor expression and binding site accessibility over the course of T cell differentiation, revealing patterns of expression versus binding site opening kinetics.
dc.languageeng
dc.publisherSpringer Science and Business Media LLC
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourcenlmid: 100960660
dc.sourceessn: 1474-760X
dc.subjectAlgorithms
dc.subjectChromatin
dc.subjectChromosome Mapping
dc.subjectChromosomes, Human
dc.subjectGene Expression Regulation
dc.subjectGenetic Markers
dc.subjectGenomics
dc.subjectHumans
dc.subjectSingle-Cell Analysis
dc.subjectSoftware
dc.subjectTranscription Factors
dc.subjectTranscriptome
dc.titleMultiMAP: dimensionality reduction and integration of multimodal data.
dc.typeArticle
dc.date.updated2022-01-28T16:42:02Z
prism.issueIdentifier1
prism.publicationNameGenome Biol
prism.volume22
dc.identifier.doi10.17863/CAM.80672
dcterms.dateAccepted2021-12-03
rioxxterms.versionofrecord10.1186/s13059-021-02565-y
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidEfremova, Mirjana [0000-0002-8107-9974]
dc.identifier.eissn1474-760X
pubs.funder-project-idBarts Charity (MGU045)
pubs.funder-project-idWellcome Trust (WT206194, WT211276/Z/18/Z)
pubs.funder-project-idChan Zuckerberg Initiative (CZF2019-002445)
cam.issuedOnline2021-12-20


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International