Show simple item record

dc.contributor.authorLevitin, Lev V
dc.contributor.authorvan der Vliet, Harriet
dc.contributor.authorTheisen, Terje
dc.contributor.authorDimitriadis, Stefanos
dc.contributor.authorLucas, Marijn
dc.contributor.authorCorcoles, Antonio D
dc.contributor.authorNyéki, Ján
dc.contributor.authorCasey, Andrew J
dc.contributor.authorCreeth, Graham
dc.contributor.authorFarrer, Ian
dc.contributor.authorRitchie, David
dc.contributor.authorNicholls, James T
dc.contributor.authorSaunders, John
dc.date.accessioned2022-02-03T16:34:11Z
dc.date.available2022-02-03T16:34:11Z
dc.date.issued2022-02-03
dc.date.submitted2021-09-28
dc.identifier.issn2041-1723
dc.identifier.others41467-022-28222-x
dc.identifier.other28222
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333598
dc.description.abstractTwo-dimensional electron gases (2DEGs) with high mobility, engineered in semiconductor heterostructures host a variety of ordered phases arising from strong correlations, which emerge at sufficiently low temperatures. The 2DEG can be further controlled by surface gates to create quasi-one dimensional systems, with potential spintronic applications. Here we address the long-standing challenge of cooling such electrons to below 1 mK, potentially important for identification of topological phases and spin correlated states. The 2DEG device was immersed in liquid 3He, cooled by the nuclear adiabatic demagnetization of copper. The temperature of the 2D electrons was inferred from the electronic noise in a gold wire, connected to the 2DEG by a metallic ohmic contact. With effective screening and filtering, we demonstrate a temperature of 0.9 ± 0.1 mK, with scope for significant further improvement. This platform is a key technological step, paving the way to observing new quantum phenomena, and developing new generations of nanoelectronic devices exploiting correlated electron states.
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectArticle
dc.subject/639/925/930
dc.subject/639/766/119/2794
dc.subject/639/766/119/1000/1018
dc.subjectarticle
dc.titleCooling low-dimensional electron systems into the microkelvin regime.
dc.typeArticle
dc.date.updated2022-02-03T16:34:11Z
prism.issueIdentifier1
prism.publicationNameNat Commun
prism.volume13
dc.identifier.doi10.17863/CAM.81014
dcterms.dateAccepted2021-12-14
rioxxterms.versionofrecord10.1038/s41467-022-28222-x
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidLevitin, Lev V [0000-0002-7817-1964]
dc.contributor.orcidTheisen, Terje [0000-0002-5344-5463]
dc.contributor.orcidDimitriadis, Stefanos [0000-0001-7328-7223]
dc.contributor.orcidCorcoles, Antonio D [0000-0002-7800-0399]
dc.contributor.orcidNyéki, Ján [0000-0002-5998-1486]
dc.contributor.orcidCasey, Andrew J [0000-0002-1996-1405]
dc.contributor.orcidFarrer, Ian [0000-0002-3033-4306]
dc.contributor.orcidRitchie, David [0000-0002-9844-8350]
dc.contributor.orcidNicholls, James T [0000-0001-5007-5228]
dc.identifier.eissn2041-1723
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/K004077/1)
cam.issuedOnline2022-02-03


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record