Show simple item record

dc.contributor.authorShen, Cheng
dc.contributor.authorLamba, Adiyant
dc.contributor.authorZhu, Meng
dc.contributor.authorZhang, Ray
dc.contributor.authorZernicka-Goetz, Magdalena
dc.contributor.authorYang, Changhuei
dc.date.accessioned2022-02-14T16:01:09Z
dc.date.available2022-02-14T16:01:09Z
dc.date.issued2022-02-14
dc.date.submitted2021-10-22
dc.identifier.issn2045-2322
dc.identifier.others41598-022-05990-6
dc.identifier.other5990
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/334012
dc.descriptionFunder: Medical Research Council; doi: http://dx.doi.org/10.13039/501100000265
dc.descriptionFunder: Cambridge Vice Chancellor’s Award Fund
dc.descriptionFunder: Open Philanthropy/Silicon Valley
dc.descriptionFunder: Weston Havens Foundations
dc.description.abstractPolarization of the mammalian embryo at the right developmental time is critical for its development to term and would be valuable in assessing the potential of human embryos. However, tracking polarization requires invasive fluorescence staining, impermissible in the in vitro fertilization clinic. Here, we report the use of artificial intelligence to detect polarization from unstained time-lapse movies of mouse embryos. We assembled a dataset of bright-field movie frames from 8-cell-stage embryos, side-by-side with corresponding images of fluorescent markers of cell polarization. We then used an ensemble learning model to detect whether any bright-field frame showed an embryo before or after onset of polarization. Our resulting model has an accuracy of 85% for detecting polarization, significantly outperforming human volunteers trained on the same data (61% accuracy). We discovered that our self-learning model focuses upon the angle between cells as one known cue for compaction, which precedes polarization, but it outperforms the use of this cue alone. By compressing three-dimensional time-lapsed image data into two-dimensions, we are able to reduce data to an easily manageable size for deep learning processing. In conclusion, we describe a method for detecting a key developmental feature of embryo development that avoids clinically impermissible fluorescence staining.
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectAnimals
dc.subjectCell Polarity
dc.subjectColoring Agents
dc.subjectDeep Learning
dc.subjectEmbryo, Mammalian
dc.subjectEmbryonic Development
dc.subjectFertilization in Vitro
dc.subjectHumans
dc.subjectMice
dc.subjectStaining and Labeling
dc.titleStain-free detection of embryo polarization using deep learning.
dc.typeArticle
dc.date.updated2022-02-14T16:01:08Z
prism.issueIdentifier1
prism.publicationNameSci Rep
prism.volume12
dc.identifier.doi10.17863/CAM.81424
dcterms.dateAccepted2022-01-10
rioxxterms.versionofrecord10.1038/s41598-022-05990-6
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.identifier.eissn2045-2322
pubs.funder-project-idRosen Bioengineering Center Pilot Research Grant Award (9900050, 9900050)
pubs.funder-project-idWellcome Trust (098287/Z/12/Z)
pubs.funder-project-idLeverhulme Trust (RPG- 2018-085)
pubs.funder-project-idNIH R01 (HD100456-01A1)
cam.issuedOnline2022-02-14


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record