Show simple item record

dc.contributor.authorDay, Thomas C
dc.contributor.authorHöhn, Stephanie S
dc.contributor.authorZamani-Dahaj, Seyed A
dc.contributor.authorYanni, David
dc.contributor.authorBurnetti, Anthony
dc.contributor.authorPentz, Jennifer
dc.contributor.authorHonerkamp-Smith, Aurelia R
dc.contributor.authorWioland, Hugo
dc.contributor.authorSleath, Hannah R
dc.contributor.authorRatcliff, William C
dc.contributor.authorGoldstein, Raymond E
dc.contributor.authorYunker, Peter J
dc.date.accessioned2022-02-22T03:30:35Z
dc.date.available2022-02-22T03:30:35Z
dc.date.issued2022-02-21
dc.date.submitted2021-08-02
dc.identifier.other72707
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/334311
dc.description.abstract<jats:p>The prevalence of multicellular organisms is due in part to their ability to form complex structures. How cells pack in these structures is a fundamental biophysical issue, underlying their functional properties. However, much remains unknown about how cell packing geometries arise, and how they are affected by random noise during growth - especially absent developmental programs. Here, we quantify the statistics of cellular neighborhoods of two different multicellular eukaryotes: lab-evolved ‘snowflake’ yeast and the green alga <jats:italic>Volvox carteri</jats:italic>. We find that despite large differences in cellular organization, the free space associated with individual cells in both organisms closely fits a modified gamma distribution, consistent with maximum entropy predictions originally developed for granular materials. This ‘entropic’ cellular packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even in the absence of developmental regulation. Together with simulations of diverse growth morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a general feature of multicellularity, arising from conserved statistics of cellular packing.</jats:p>
dc.languageen
dc.publishereLife Sciences Publications, Ltd
dc.subjectResearch Article
dc.subjectPhysics of Living Systems
dc.subjectmulticellularity
dc.subjectSnowflake yeast
dc.subjectVolvox
dc.subjectentropy
dc.subjectS. cerevisiae
dc.subjectOther
dc.titleCellular organization in lab-evolved and extant multicellular species obeys a maximum entropy law
dc.typeArticle
dc.date.updated2022-02-22T03:30:32Z
prism.publicationNameeLife
prism.volume11
dc.identifier.doi10.17863/CAM.81724
dcterms.dateAccepted2022-01-04
rioxxterms.versionofrecord10.7554/elife.72707
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
datacite.contributor.supervisoreditor: Giardina, Irene
datacite.contributor.supervisorsenior_editor: Walczak, Aleksandra M
dc.contributor.orcidDay, Thomas C [0000-0003-4681-9348]
dc.contributor.orcidHöhn, Stephanie S [0000-0003-1815-705X]
dc.contributor.orcidGoldstein, Raymond E [0000-0003-2645-0598]
dc.contributor.orcidYunker, Peter J [0000-0001-8471-4171]
dc.identifier.eissn2050-084X
pubs.funder-project-idNational Institutes of Health (1R35GM138030)
pubs.funder-project-idWellcome Trust (207510/Z/17/Z)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M017982/1)
pubs.funder-project-idNational Institutes of Health (1R35GM138354-01)
pubs.funder-project-idEngineering and Physical Sciences Research Council (Vacation Bursary)
pubs.funder-project-idJohn Templeton Foundation (A009723003)
cam.issuedOnline2022-02-21


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record