Show simple item record

dc.contributor.authorLevitin, Lev V
dc.contributor.authorvan der Vliet, Harriet
dc.contributor.authorTheisen, Terje
dc.contributor.authorDimitriadis, Stefanos
dc.contributor.authorLucas, Marijn
dc.contributor.authorCorcoles, Antonio D
dc.contributor.authorNyéki, Ján
dc.contributor.authorCasey, Andrew J
dc.contributor.authorCreeth, Graham
dc.contributor.authorFarrer, Ian
dc.contributor.authorRitchie, David
dc.contributor.authorNicholls, James T
dc.contributor.authorSaunders, John
dc.date.accessioned2022-03-08T02:03:24Z
dc.date.available2022-03-08T02:03:24Z
dc.date.issued2022-02-03
dc.identifier.issn2041-1723
dc.identifier.otherPMC8814190
dc.identifier.other35115494
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/334753
dc.description.abstractTwo-dimensional electron gases (2DEGs) with high mobility, engineered in semiconductor heterostructures host a variety of ordered phases arising from strong correlations, which emerge at sufficiently low temperatures. The 2DEG can be further controlled by surface gates to create quasi-one dimensional systems, with potential spintronic applications. Here we address the long-standing challenge of cooling such electrons to below 1 mK, potentially important for identification of topological phases and spin correlated states. The 2DEG device was immersed in liquid 3He, cooled by the nuclear adiabatic demagnetization of copper. The temperature of the 2D electrons was inferred from the electronic noise in a gold wire, connected to the 2DEG by a metallic ohmic contact. With effective screening and filtering, we demonstrate a temperature of 0.9 ± 0.1 mK, with scope for significant further improvement. This platform is a key technological step, paving the way to observing new quantum phenomena, and developing new generations of nanoelectronic devices exploiting correlated electron states.
dc.languageeng
dc.publisherSpringer Science and Business Media LLC
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourcenlmid: 101528555
dc.sourceessn: 2041-1723
dc.titleCooling low-dimensional electron systems into the microkelvin regime.
dc.typeArticle
dc.date.updated2022-03-08T02:03:23Z
prism.issueIdentifier1
prism.publicationNameNat Commun
prism.volume13
dc.identifier.doi10.17863/CAM.82183
dcterms.dateAccepted2021-12-14
rioxxterms.versionofrecord10.1038/s41467-022-28222-x
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidLevitin, Lev V [0000-0002-7817-1964]
dc.contributor.orcidTheisen, Terje [0000-0002-5344-5463]
dc.contributor.orcidDimitriadis, Stefanos [0000-0001-7328-7223]
dc.contributor.orcidCorcoles, Antonio D [0000-0002-7800-0399]
dc.contributor.orcidNyéki, Ján [0000-0002-5998-1486]
dc.contributor.orcidCasey, Andrew J [0000-0002-1996-1405]
dc.contributor.orcidFarrer, Ian [0000-0002-3033-4306]
dc.contributor.orcidRitchie, David [0000-0002-9844-8350]
dc.contributor.orcidNicholls, James T [0000-0001-5007-5228]
dc.identifier.eissn2041-1723
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/K004077/1)
cam.issuedOnline2022-02-03


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International