Non-linear behaviour of warped discs around a central object with a quadrupole moment
View / Open Files
Authors
Deng, H
Ogilvie, GI
Publication Date
2022Journal Title
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
Publisher
Oxford University Press (OUP)
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Deng, H., & Ogilvie, G. (2022). Non-linear behaviour of warped discs around a central object with a quadrupole moment. Monthly Notices of the Royal Astronomical Society https://doi.org/10.1093/mnras/stac858
Abstract
<jats:title>ABSTRACT</jats:title>
<jats:p>The non-linear behaviour of low-viscosity warped discs is poorly understood. We verified a non-linear bending-wave theory, in which fluid columns undergo affine transformations, with direct 3D hydrodynamical simulations. We employed a second-order Godunov-type scheme, meshless finite mass (MFM), and also the smoothed particle hydrodynamics (SPH) method, with up to 128 million particles. For moderate non-linearity, MFM maintains well the steady non-linear warp predicted by the affine model for a tilted inviscid disc around a central object with a quadrupole moment. However, numerical dissipation in SPH is so severe that even a low-amplitude non-linear warp degrades at a resolution where MFM performs well. A low-amplitude arbitrary warp tends to evolve towards a non-linear steady state. However, no such state exists in our thin disc with an angular semithickness H/R = 0.02 when the outer tilt angle is beyond about 14°. The warp breaks tenuously and reconnects in adiabatic simulations, or breaks into distinct annuli in isothermal simulations. The breaking radius lies close to the location with the most extreme non-linear deformation. Parametric instability is captured only in our highest resolution simulation, leading to ring structures that may serve as incubators for planets around binaries.</jats:p>
Sponsorship
STFC (ST/T00049X/1)
Identifiers
External DOI: https://doi.org/10.1093/mnras/stac858
This record's URL: https://www.repository.cam.ac.uk/handle/1810/335456
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk