Show simple item record

dc.contributor.authorTakahashi, K
dc.contributor.authorFujishiro, H
dc.contributor.authorAinslie, MD
dc.date.accessioned2022-03-30T12:00:13Z
dc.date.available2022-03-30T12:00:13Z
dc.date.issued2022
dc.date.submitted2022-02-04
dc.identifier.issn0953-2048
dc.identifier.othersustac5fe3
dc.identifier.otherac5fe3
dc.identifier.othersust-104991.r1
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335511
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>The concept of a high-gradient trapped field magnet (HG-TFM), which incorporates a hybrid system of two (RE)BaCuO superconducting bulk components with different functions, was proposed in 2021 by the authors based on the results of numerical simulations. The HG-TFM as a desktop-type magnet can be a more effective way to generate a higher magnetic field gradient product of <jats:italic>B<jats:sub>z</jats:sub> </jats:italic> · d<jats:italic>B<jats:sub>z</jats:sub> </jats:italic>/d<jats:italic>z</jats:italic> (&gt;−1400 T<jats:sup>2</jats:sup> m<jats:sup>−1</jats:sup>, as calculated for a pure water), which can realize a quasi-microgravity space applicable for Space Environment Utilization on a laboratory scale. In this study, to validate the quasi-microgravity space in the HG-TFM, a prototype HG-TFM apparatus has been built using a slit-bulk TFM and stacked full-TFM (without slits) with inner diameters of 36 mm. After field-cooled magnetization from 8.60 T at 21 K, a trapped field of <jats:italic>B</jats:italic> <jats:sub>T</jats:sub> = 8.57 T was achieved at the center (i.e. at the bottom of a room temperature bore of 25 mm diameter outside the vacuum chamber), and consequently, a maximum <jats:italic>B<jats:sub>z</jats:sub> </jats:italic> · d<jats:italic>B<jats:sub>z</jats:sub> </jats:italic>/d<jats:italic>z</jats:italic> = −1930 T<jats:sup>2</jats:sup> m<jats:sup>−1</jats:sup> was obtained at the intermediate position between the slit-bulk TFM and the stacked full-TFM. Magnetic levitation was demonstrated successfully for bismuth particles and a pure water drop, which validates the quasi-microgravity environment in the HG-TFM. Based on numerical simulation results of the trapped field profile, it is concluded that the reason for the instability of the levitated targets is because of the repulsive magnetic force applied along the horizontal plane. The levitating state can be controllable, for example, by changing the operating temperature, which would allow objects to levitate statically along the central axis.</jats:p>
dc.languageen
dc.publisherIOP Publishing
dc.subjectbulk superconductors
dc.subjecttrapped field magnets
dc.subjecthigh gradient magnets
dc.subjectmagnetic levitation
dc.subjectquasi-zero gravity
dc.subjectmagnetic force
dc.subjectquasi-microgravity
dc.titleValidation of a desktop-Type magnet providing a quasi-microgravity space in a room-Temperature bore of a high-gradient trapped field magnet (HG-TFM)
dc.typeArticle
dc.date.updated2022-03-30T12:00:13Z
prism.issueIdentifier5
prism.publicationNameSuperconductor Science and Technology
prism.volume35
dc.identifier.doi10.17863/CAM.82944
dcterms.dateAccepted2022-03-22
rioxxterms.versionofrecord10.1088/1361-6668/ac5fe3
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0
dc.contributor.orcidTakahashi, K [0000-0002-8278-2688]
dc.contributor.orcidFujishiro, H [0000-0003-1483-835X]
dc.contributor.orcidAinslie, MD [0000-0003-0466-3680]
dc.identifier.eissn1361-6668
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P020313/1)
cam.issuedOnline2022-04-04


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record