Interoperability of statistical models in pandemic preparedness: principles and reality
dc.contributor.author | Nicholson, George | |
dc.contributor.author | Blangiardo, Marta | |
dc.contributor.author | Briers, Mark | |
dc.contributor.author | Diggle, Peter J | |
dc.contributor.author | Fjelde, Tor Erlend | |
dc.contributor.author | Ge, Hong | |
dc.contributor.author | Goudie, Robert JB | |
dc.contributor.author | Jersakova, Radka | |
dc.contributor.author | King, Ruairidh E | |
dc.contributor.author | Lehmann, Brieuc CL | |
dc.contributor.author | Mallon, Ann-Marie | |
dc.contributor.author | Padellini, Tullia | |
dc.contributor.author | Teh, Yee Whye | |
dc.contributor.author | Holmes, Chris | |
dc.contributor.author | Richardson, Sylvia | |
dc.date.accessioned | 2022-04-07T23:30:05Z | |
dc.date.available | 2022-04-07T23:30:05Z | |
dc.date.issued | 2022-05 | |
dc.identifier.issn | 0883-4237 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/335891 | |
dc.description.abstract | We present "interoperability" as a guiding framework for statistical modelling to assist policy makers asking multiple questions using diverse datasets in the face of an evolving pandemic response. Interoperability provides an important set of principles for future pandemic preparedness, through the joint design and deployment of adaptable systems of statistical models for disease surveillance using probabilistic reasoning. We illustrate this through case studies for inferring spatial-temporal coronavirus disease 2019 (COVID-19) prevalence and reproduction numbers in England. | |
dc.publisher | Institute of Mathematical Statistics | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | stat.ME | |
dc.subject | stat.ME | |
dc.subject | stat.AP | |
dc.subject | 62P10 | |
dc.title | Interoperability of statistical models in pandemic preparedness: principles and reality | |
dc.type | Article | |
dc.publisher.department | Mrc Biostatistics Unit | |
dc.date.updated | 2022-04-06T15:45:41Z | |
prism.publicationName | Statistical Science | |
dc.identifier.doi | 10.17863/CAM.83325 | |
dcterms.dateAccepted | 2022-03-29 | |
rioxxterms.versionofrecord | 10.1214/22-STS854 | |
rioxxterms.version | VoR | |
dc.contributor.orcid | Goudie, Robert [0000-0001-9554-1499] | |
dc.contributor.orcid | Richardson, Sylvia [0000-0003-1998-492X] | |
dc.identifier.eissn | 2168-8745 | |
rioxxterms.type | Journal Article/Review | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/R018561/1) | |
pubs.funder-project-id | MRC (Unknown) | |
pubs.funder-project-id | MRC (unknown) | |
cam.issuedOnline | 2022-05 | |
cam.orpheus.success | Thu May 26 15:20:06 BST 2022 - Embargo updated | |
cam.orpheus.counter | 3 | |
cam.depositDate | 2022-04-06 | |
pubs.licence-identifier | apollo-deposit-licence-2-1 | |
pubs.licence-display-name | Apollo Repository Deposit Licence Agreement |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge