Show simple item record

dc.contributor.authorNicholson, George
dc.contributor.authorBlangiardo, Marta
dc.contributor.authorBriers, Mark
dc.contributor.authorDiggle, Peter J
dc.contributor.authorFjelde, Tor Erlend
dc.contributor.authorGe, Hong
dc.contributor.authorGoudie, Robert JB
dc.contributor.authorJersakova, Radka
dc.contributor.authorKing, Ruairidh E
dc.contributor.authorLehmann, Brieuc CL
dc.contributor.authorMallon, Ann-Marie
dc.contributor.authorPadellini, Tullia
dc.contributor.authorTeh, Yee Whye
dc.contributor.authorHolmes, Chris
dc.contributor.authorRichardson, Sylvia
dc.date.accessioned2022-04-07T23:30:05Z
dc.date.available2022-04-07T23:30:05Z
dc.date.issued2022-05
dc.identifier.issn0883-4237
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335891
dc.description.abstractWe present "interoperability" as a guiding framework for statistical modelling to assist policy makers asking multiple questions using diverse datasets in the face of an evolving pandemic response. Interoperability provides an important set of principles for future pandemic preparedness, through the joint design and deployment of adaptable systems of statistical models for disease surveillance using probabilistic reasoning. We illustrate this through case studies for inferring spatial-temporal coronavirus disease 2019 (COVID-19) prevalence and reproduction numbers in England.
dc.publisherInstitute of Mathematical Statistics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectstat.ME
dc.subjectstat.ME
dc.subjectstat.AP
dc.subject62P10
dc.titleInteroperability of statistical models in pandemic preparedness: principles and reality
dc.typeArticle
dc.publisher.departmentMrc Biostatistics Unit
dc.date.updated2022-04-06T15:45:41Z
prism.publicationNameStatistical Science
dc.identifier.doi10.17863/CAM.83325
dcterms.dateAccepted2022-03-29
rioxxterms.versionofrecord10.1214/22-STS854
rioxxterms.versionVoR
dc.contributor.orcidGoudie, Robert [0000-0001-9554-1499]
dc.contributor.orcidRichardson, Sylvia [0000-0003-1998-492X]
dc.identifier.eissn2168-8745
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R018561/1)
pubs.funder-project-idMRC (Unknown)
pubs.funder-project-idMRC (unknown)
cam.issuedOnline2022-05
cam.orpheus.successThu May 26 15:20:06 BST 2022 - Embargo updated
cam.orpheus.counter3
cam.depositDate2022-04-06
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International