Show simple item record

dc.contributor.authorde Jager, Edwin John
dc.contributor.authorRisser, Laurent
dc.contributor.authorMescam, Muriel
dc.contributor.authorFonta, Caroline
dc.contributor.authorBeaudet, Amelie
dc.date.accessioned2022-06-07T08:13:09Z
dc.date.available2022-06-07T08:13:09Z
dc.date.issued2022-06-04
dc.date.submitted2021-12-05
dc.identifier.issn1065-9471
dc.identifier.otherhbm25964
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/337790
dc.descriptionFunder: University of Cambridge Harding Distinguished Postgraduate Scholars Programme
dc.description.abstractKey questions in paleoneurology concern the timing and emergence of derived cerebral features within the human lineage. Endocasts are replicas of the internal table of the bony braincase that are widely used in paleoneurology as a proxy for reconstructing a timeline for hominin brain evolution in the fossil record. The accurate identification of cerebral sulci imprints in endocasts is critical for assessing the topographic extension and structural organisation of cortical regions in fossil hominins. High-resolution imaging techniques combined with established methods based on population-specific brain atlases offer new opportunities for tracking detailed endocranial characteristics. This study provides the first documentation of sulcal pattern imprints from the superolateral surface of the cerebrum using a population-based atlas technique on extant human endocasts. Human crania from the Pretoria Bone Collection (South Africa) were scanned using micro-CT. Endocasts were virtually extracted, and sulci were automatically detected and manually labelled. A density map method was applied to project all the labels onto an averaged endocast to visualise the mean distribution of each identified sulcal imprint. This method allowed for the visualisation of inter-individual variation of sulcal imprints, for example, frontal lobe sulci, correlating with previous brain-MRI studies and for the first time the extensive overlapping of imprints in historically debated areas of the endocast (e.g. occipital lobe). In providing an innovative, non-invasive, observer-independent method to investigate human endocranial structural organisation, our analytical protocol introduces a promising perspective for future research in paleoneurology and for discussing critical hypotheses on the evolution of cognitive abilities among hominins.
dc.languageen
dc.publisherWiley
dc.subjectRESEARCH ARTICLE
dc.subjectRESEARCH ARTICLES
dc.subjectatlas
dc.subjectdensity map
dc.subjecthuman cortex
dc.subjectmicro‐CT
dc.subjectsulcal pattern
dc.subjectvirtual endocasts
dc.titleSulci 3D mapping from human cranial endocasts: A powerful tool to study hominin brain evolution.
dc.typeArticle
dc.date.updated2022-06-07T08:13:09Z
prism.publicationNameHum Brain Mapp
dc.identifier.doi10.17863/CAM.85199
dcterms.dateAccepted2022-05-09
rioxxterms.versionofrecord10.1002/hbm.25964
rioxxterms.versionAO
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.orcidde Jager, Edwin John [0000-0003-3199-8566]
dc.contributor.orcidFonta, Caroline [0000-0001-6326-4044]
dc.contributor.orcidBeaudet, Amelie [0000-0002-9363-5966]
dc.identifier.eissn1097-0193
pubs.funder-project-idSouth Africa/France (PROTEA) Joint Research Programme (129923)
cam.issuedOnline2022-06-04


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record