Show simple item record

dc.contributor.authorLi, Feng
dc.contributor.authorGillett, Alexander J
dc.contributor.authorGu, Qinying
dc.contributor.authorDing, Junshuai
dc.contributor.authorChen, Zhangwu
dc.contributor.authorHele, Timothy JH
dc.contributor.authorMyers, William K
dc.contributor.authorFriend, Richard H
dc.contributor.authorEvans, Emrys W
dc.date.accessioned2022-06-19T01:02:44Z
dc.date.available2022-06-19T01:02:44Z
dc.date.issued2022-05-18
dc.identifier.issn2041-1723
dc.identifier.other35585063
dc.identifier.otherPMC9117228
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338229
dc.description.abstractOrganic light-emitting diodes (OLEDs) must be engineered to circumvent the efficiency limit imposed by the 3:1 ratio of triplet to singlet exciton formation following electron-hole capture. Here we show the spin nature of luminescent radicals such as TTM-3PCz allows direct energy harvesting from both singlet and triplet excitons through energy transfer, with subsequent rapid and efficient light emission from the doublet excitons. This is demonstrated with a model Thermally-Activated Delayed Fluorescence (TADF) organic semiconductor, 4CzIPN, where reverse intersystem crossing from triplets is characteristically slow (50% emission by 1 µs). The radical:TADF combination shows much faster emission via the doublet channel (80% emission by 100 ns) than the comparable TADF-only system, and sustains higher electroluminescent efficiency with increasing current density than a radical-only device. By unlocking energy transfer channels between singlet, triplet and doublet excitons, further technology opportunities are enabled for optoelectronics using organic radicals.
dc.languageeng
dc.publisherSpringer Science and Business Media LLC
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceessn: 2041-1723
dc.sourcenlmid: 101528555
dc.titleSinglet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals.
dc.typeArticle
dc.date.updated2022-06-19T01:02:43Z
prism.issueIdentifier1
prism.publicationNameNat Commun
prism.volume13
dc.identifier.doi10.17863/CAM.85641
dcterms.dateAccepted2022-03-02
rioxxterms.versionofrecord10.1038/s41467-022-29759-7
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidLi, Feng [0000-0001-5236-3709]
dc.contributor.orcidGillett, Alexander J [0000-0001-7572-7333]
dc.contributor.orcidHele, Timothy JH [0000-0003-2367-3825]
dc.contributor.orcidMyers, William K [0000-0001-5935-9112]
dc.contributor.orcidFriend, Richard H [0000-0001-6565-6308]
dc.contributor.orcidEvans, Emrys W [0000-0002-9092-3938]
dc.identifier.eissn2041-1723
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M005143/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M01083X/1)
pubs.funder-project-idEuropean Research Council (670405)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (101020167)
cam.issuedOnline2022-05-18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International