We will be undertaking essential maintenance work on Apollo's infrastructure on Thursday 14 August and Friday 15 August, therefore expect intermittent access to Apollo's content and search interface during that time. Please also note that Apollo's "Request a copy" service will be temporarily disabled while we undertake this work.
Repository logo
 

Clonal dynamics after allogeneic haematopoietic cell transplantation.

Published version
Peer-reviewed

Repository DOI


Change log

Abstract

Allogeneic haematopoietic cell transplantation (HCT) replaces the stem cells responsible for blood production with those from a donor1,2. Here, to quantify dynamics of long-term stem cell engraftment, we sequenced genomes from 2,824 single-cell-derived haematopoietic colonies of ten donor-recipient pairs taken 9-31 years after HLA-matched sibling HCT3. With younger donors (18-47 years at transplant), 5,000-30,000 stem cells had engrafted and were still contributing to haematopoiesis at the time of sampling; estimates were tenfold lower with older donors (50-66 years). Engrafted cells made multilineage contributions to myeloid, B lymphoid and T lymphoid populations, although individual clones often showed biases towards one or other mature cell type. Recipients had lower clonal diversity than matched donors, equivalent to around 10-15 years of additional ageing, arising from up to 25-fold greater expansion of stem cell clones. A transplant-related population bottleneck could not explain these differences; instead, phylogenetic trees evinced two distinct modes of HCT-specific selection. In pruning selection, cell divisions underpinning recipient-enriched clonal expansions had occurred in the donor, preceding transplant-their selective advantage derived from preferential mobilization, collection, survival ex vivo or initial homing. In growth selection, cell divisions underpinning clonal expansion occurred in the recipient's marrow after engraftment, most pronounced in clones with multiple driver mutations. Uprooting stem cells from their native environment and transplanting them to foreign soil exaggerates selective pressures, distorting and accelerating the loss of clonal diversity compared to the unperturbed haematopoiesis of donors.

Description

Acknowledgements: This work was supported by the WBH Foundation. Investigators at the Sanger Institute are supported by a core grant from the Wellcome Trust. Work in the D.G.K. laboratory is supported by a Bloodwise Bennett Fellowship (15008), a Cancer Research UK Programme Foundation Award (DCRPGF\100008) and a European Research Council Starting Grant (ERC-2016-STG–715371). Work in the A.R.G. laboratory is supported by the Wellcome Trust, Bloodwise, Cancer Research UK, the Kay Kendall Leukaemia Fund, the Leukemia and Lymphoma Society of America and a core support grant from the Wellcome Trust and Medical Research Council to the Cambridge Stem Cell Institute.

Journal Title

Nature

Conference Name

Journal ISSN

0028-0836
1476-4687

Volume Title

635

Publisher

Springer Science and Business Media LLC

Rights and licensing

Except where otherwised noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Sponsorship
Bloodwise (15008)
European Research Council (715371)
Medical Research Council (MC_PC_17230)